Evaluation of ventilation efficiency in a local domain using *Net Escape Velocity* and *Net Escape Probability*

Eunsu LIM (Toyo University)

Contents

- Introduction and motivation
- Local Purging Flow Rate and Net Escape Velocity
- Net Escape Probability and Returning Probability
- Application to Ventilation Design

Background

 Purpose of ventilation design: to replace the polluted air with fresh air

Ventilation Design

- Methods of Ventilation Design :
- Air exchange rate
- Supplying fresh air
- Removing contaminant

are related to the distribution of flow and diffusion fields

To evaluate the ventilation efficiency at a local domain is important.

Indices of ventilation efficiency

The several indices of ventilation efficiency for evaluating a local domain have been proposed.

Research Level

- The age of air (Sandberg, 1981)
- The Scale for Ventilation Efficiency (SVE1~6) (Kato and Murakami, 1986)
- Local Purging Flow Rate (Sandberg and Sjöberg, 1983)

Practical Level

- The air change effectiveness ASHRAE-s in US
- The normalized concentration in an occupied zone SHASE-s in Japan

The minimum scale of Ventilation Efficiency

- The average concentration of the target area is determined by the amount of contaminant generated and the air flow rate
- When L-PFR is defined at a "point", the scale will be air velocity dimension [m/sec] → ??

Local-Purging Flow Rate (L-PFR)

- The flow rate to dilute/remove contaminant generated in a target local domain. [m³/s]
- The flow rate that defines the average concentration of the local domain. L-PFR is not equal to the flow rate q_{in}

The minimum scale of Ventilation Efficiency

- The average concentration of the target area is determined by the amount of contaminant generated and the air flow rate
- When L-PFR is defined at a "point", the scale will be air velocity dimension [m/sec] → Net Escape Velocity (1997, Sandberg)

The transport of contaminant

Contaminant transport is governed by convection and diffusion phenomena

Net Escape Velocity

the effective velocity of contaminant transport/dilution at a target point

 Net Escape Velocity is defined by the concentration of contaminant, convective flux and diffusive flux at the target point

 On premise of numerical calculation: the CV → the point

Assumption (CFD)

On the premise of discretization by the finite volume method,

Volume integration in CV \Rightarrow In CV assumed to be uniform \downarrow

CV can be thought of as a mass point \downarrow

The amount of contaminant dilution for CV Instead of flow rate scale,

Express on the representative velocity scale

Net Escape Velocity

NEV, [m/s]

The velocity of contaminant at a CV is diluted/removed from the CV, never returning.

 ϕ_{CV} : Contaminant concentration in target CV [kg/m³] D_{eff} : Effective diffusion coefficient [-], $D_{eff} = D + v_t / \sigma_t$

$$\sigma_t$$
 : Turbulent Schmidt number [-]

 $q_{\mathit{in}}, q_{\mathit{out}}\;$: the amount of contaminant flowed in the CV [kg/s]

Definition of Net Escape Velocity

Vector quantity

Net Escape Velocity Star (NEV*)

NEV* , [m/s]

The velocity of contaminant at a CV is transported from the CV.

 ϕ_{CV} : Contaminant concentration in target CV [kg/m³]

 $D_{_{e\!f\!f}}$: Effective diffusion coefficient [-], $D_{_{e\!f\!f}}$ = D + u_t $/\sigma_t$

- σ_t : Turbulent Schmidt number [-]
- $q_{\mathit{in}}, q_{\mathit{out}}~$: the amount of contaminant flowed in the CV [kg/s]

Transport component of indoor-generated contaminants

Transport component of contaminants generated at the target mass point (CV) will be divided to 2 components.

- Component to be removed directly through the exhaust outlet
- Component returning to generation point (CV) by circulating flow

Comparison of Fluid mechanics and Ventilation

• Properties

Fluid mechanics	Ventilation
Flow of all fluid particles	Flow of fluid particles never returning
Velocity of any fluid particle	(Flow of fluid particles never returning)/(control surface)

Corresponding terminology

Fluid mechanics	Ventilation
Flow rate	Purging Flow Rate
Velocity	Net Escape Velocity

Ventilation index NEP, RP

Returning Probability (RP)

Conceptual Diagram of NEP and RP

Net Escape Probability (NEP)

Ventilation index NEP, RP

Returning Probability (RP)

Industrial ventilation sy

(Kitchen, Push-Pull hood)

(NEP)

$NEP = \frac{qV_{CV}}{F_{outflow}A_{outflow}}$

Conceptual Diagram of NEP and RP

Our works

- Definition of Net Escape Velocity and analysis by RANS model, NEV and NEP
- Application of NEV to 3D flow field / contaminant diffusion field
- Application of NEV to air quality control problem for various local ventilators, NEV and NEP

Net Escape Probability

NEV and NEP analysis (2D Simple Room)

- $10L_0 \times 10L_0$ (L_0 : inlet size)
- Turbulence model: standard
- k-ε Turbulence intensity: 30%,

 $Re=U_0L_0/v \doteq 66,000$

Simple 2-dimensional model

Flow field Diffusion field **NEV** analysis

Results (flow field, diffusion field)

vector velocity

y scala

- scalar velocity
- concentration

Distribution of air velocity and NEV

Vector distribution of NEV and U

Scalar distribution of NEV

There is no significant difference between NEV and advective velocity U. The difference is diffusion effect for contaminant transport.

the NEV normalized by mean velocity ${\rm NEV}\,/\,{\rm U}$

NEV / mean velocity at the CV

- Dimensionless NEV = 1, advective velocity U = NEV
- 1 The effect of the diffusion flux on the transport of contaminants
- Nondimensional NEV <1 direction:

Advective velocity \neq NEV

Nondimensional NEV> 1
direction:
Advective velocity = NEV

The distributions of advective velocity U, NEV and NEP

Advective velocity U and NEV

• Advective velocity ≠ NEV

Distributions

Scalar distribution of air velocity

a example of Contaminant concentration field

Evaluation at the hypothetical boundaries of control zone (Kitchen hood)

NEV* distribution on the hypothetical boundaries between the kitchen hood domain and the surrounding areas

Application of NEV to air quality control problem for various local ventilation system

Kitchen hood

Push-Pull hood

Push-Pull ventilation system

* Evaluation of ventilation efficiency by NEV and NEP on the hypothetical boundary

Kitchen hood model (different flow rate case)

NEV vector distribution

NEP distribution (Hypothetical boundary P-1, P-2)

contaminant concentration

NEP distribution

Articles

- Articles concerning NEV in our article as follows,
 - Eunsu Lim, Kazuhide Ito and Mats Sandberg : New Ventilation Index for evaluating imperfect mixing condition- Analysis of Net Escape Velocity based on RANS Approach : *Building and Environment*, 61, pp45–56, 2013
 - Eunsu Lim, Kazuhide Ito and Mats Sandberg : Performance evaluation of contaminant removal and air quality control for local ventilation systems using the ventilation index Net Escape Velocity : *Building and Environment*, 79, pp78–89, 2014
- Articles concerning NEP
 - Eunsu Lim, Kazuhide Ito: Net Escape Probability of Contaminant from a Local Domain to Exhaust Outlet: *J. Environ. Eng.* 82(733), 249-256, 2017.3
 - Juyeon Chung, Eunsu Lim and Kazuhide Ito: Evaluation of Ventilation Efficiency in Local Ventilation System Based on Ventilation Indices NEV and NEP: *J. Environ. Eng.Kyushu Branch.* 2017.3

Conclusion

Net Escape Velocity (high value)

- The effective velocity of contaminant transport/dilution at a target point.
- Advective velocity + Diffusive velocity
- One of the limitation types of ventilation index.

Net Escape Probability (high value)

- the probability of direct exhaust of contaminant from the "point/local domain" towards the exhaust outlet
- The probability of Purging Flow Rate

Returning Probability (low value)

• The probability returning to generation point (CV) by circulating flow

Conclusion

- We believe that the NEV and NEP will provide useful information to IAQ control.
- We will accumulate the analysis examples of ventilation design.

