Evaluation of ventilation efficiency in a local
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Net Escape Velocity and Net Escape Probability
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* Introduction and motivation

* Local Purging Flow Rate and Net Escape
Velocity

* Net Escape Probability and Returning
Probability

* Application to Ventilation Design
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Polluted room Ventilated room

Purpose of ventilation design:
to replace the polluted air with fresh air

Ventilation Design

* Methods of Ventilation Design :

» Air exchange rate

are related to the distribution of flow and diffusion fields

To evaluate the ventilation efficiency at a local
domain is important.




Indices of ventilation efficiency

The several indices of ventilation efficiency for
evaluating a local domain have been proposed.

Research Level
* The age of air (Sandberg, 1981)
* The Scale for Ventilation Efficiency (SVE1~6)
(Kato and Murakami, 1986 )
* Local Purging Flow Rate (Sandberg and Sjoberg, 1983)

Practical Level

* The air change effectiveness — ASHRAE-s in US

* The normalized concentration in an occupied zone —
SHASE-s in Japan

Local-Purging Flow Rate (L-PFR)

* The flow rate to dilute/remove contaminant generated in
a target local domain. [m3/s]

* The flow rate that defines the average concentration of
the local domain. L-PFR is not equal to the flow rate q,,

The minimum scale of Ventilation

The minimum scale of Ventilation
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* The average concentration of the target area is
determined by the amount of contaminant generated
and the air flow rate

* When L-PFR is defined at a "point", the scale will be air
velocity dimension [m/sec] - ??
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* The average concentration of the target area is
determined by the amount of contaminant generated
and the air flow rate

* When L-PFR is defined at a "point", the scale will be air
velocity dimension [m/sec] = Net Escape Velocity
(1997, Sandberg)




The transport of contaminant Assumption (CFD)
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Net Escape Velocity Star (NEV*)

NEV*, [m/s]
The velocity of contaminant at a CV is transported from the CV.
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@cv : Contaminant concentration in target CV [kg/m?3]

D, : Effective diffusion coefficient [-], D,, = D + v, /o,
O¢ : Turbulent Schmidt number [-]

Gin, 9our : the amount of contaminant flowed in the CV [kg/s]

Comparison of Fluid mechanics and Ventilation

* Properties

Fluid mechanics Ventilation

Flow of all fluid particles Flow of fluid particles never
returning

Velocity of any fluid particle (Flow of fluid particles never

returning)/(control surface)

* Corresponding terminology

Fluid mechanics Ventilation
Flow rate Purging Flow Rate
Velocity Net Escape Velocity

Transport component of indoor-generated

contaminants

Transport component of contaminants generated at the
target mass point (CV) will be divided to 2 components.
* Component to be removed directly through the exhaust outlet
* Component returning to generation point (CV) by circulating flow
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Ventilation index NEP, RP

Ventilation index NEP, RP

Returning Probability (RP)
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Conceptual Diagram of NEP and RP
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Conceptual Diagram of NEP and RP

* Definition of Net Escape
Velocity and analysis by
RANS model, NEV and NEP

* Application of NEV to 3D
flow field / contaminant
diffusion field

* Application of NEV to air
guality control problem for

various local ventilators, NEV

and NEP
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- Industrial ventilation system
« \U (Kitchen, Push-Pull hood)

1

NEV and NEP analysis (2D Simple Room)

- ® 10L, X 10L, (Ly: inlet size)
¢ Turbulence model: standard
| k-g Turbulence intensity: 30%,
Re=U,L,/v =66,000
o o,
—-
Up
Xujo=1", 10L,

Simple 2-dimensional model

Flow field >> Diffusion field>-




Results (flow field, diffusion field)
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Distribution of air velocity and NEV
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Vector distribution of NEV Scalar distribution of NEV
and U

There is no significant difference between NEV and advective

velocity U. The difference is diffusion effect for contaminant
transport.

the NEV normalized by mean velocity NEV / U

10 ¢ Dimensionless NEV =1,
9 advective velocity U = NEV
8
7 * 1 The effect of the diffusion flux
6 on the transport of
i contaminants
; * Nondimensional NEV <1
N direction:
172"3"4" 567787910 Advective velocity # NEV
NEV / mean velocity at the CV * Nondimensional NEV> 1
direction:

Advective velocity = NEV

The distributions of
advective velocity U, NEV and NEP
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Advective velocity U and NEV NEP

* Advective velocity # NEV




Distributions
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a example of Contaminant

Scalar distribution of air velocity o
concentration field

Application of NEV to air quality control

problem for various local ventilation system
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Kitchen hood Push-Pull hood

Evaluation at the hypothetical boundaries of
control zone ( Kitchen hood )

Push-Pull ventilation system
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NEV* distribution on the hypothetical boundaries
between the kitchen hood domain and the
surrounding areas
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* Evaluation of ventilation efficiency by NEV and NEP on the
hypothetical boundary




Kitchen hood model

different flow rate case

NEV vector distribution
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Push-Pull ventilation system model

Analysis by Dr. Chung, Kyushu University

Geometry of room model
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Push-pull ventilation system

NEV* distribution (Hypothetical boundary P-1, P-2)
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NEP distribution (Hypothetical boundary P-1, P-2)
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Increasing diffusive flux

flowed in the control zone

-

1071 063

| Finow T = NEP {

p-2

- 34~37% of
contaminant is flowed
to room, outside of
Push-Pull control zone

0.77 0.66
\ |

contaminant .. .
. NEP distribution
concentration

Conclusion

Net Escape Velocity ( high value) r 1

* The effective velocity of contaminant
transport/dilution at a target point. NEV[m/s]

» Advective velocity + Diffusive velocity —m
» One of the limitation types of ventilation index. qiE> Y

Net Escape Probability ( high value)

* the probability of direct exhaust of contaminant
from the “point/local domain” towards the
exhaust outlet

* The probability of Purging Flow Rate

I Supply inlet Exhaust oulletl

Returning Probability ( low value)

* The probability returning to generation point (CV) Voo ‘
by circulating flow

* Articles concerning NEV in our article as follows,

— Eunsu Lim, Kazuhide Ito and Mats Sandberg : New Ventilation Index for
evaluating imperfect mixing condition- Analysis of Net Escape Velocity
based on RANS Approach : Building and Environment, 61, pp45-56,
2013

— Eunsu Lim, Kazuhide Ito and Mats Sandberg : Performance evaluation of
contaminant removal and air quality control for local ventilation systems
using the ventilation index Net Escape Velocity : Building and
Environment, 79, pp78-89, 2014

* Articles concerning NEP

— Eunsu Lim, Kazuhide Ito: Net Escape Probability of Contaminant from a
Local Domain to Exhaust Outlet: J. Environ. Eng. 82(733), 249-256,
2017.3

— Juyeon Chung, Eunsu Lim and Kazuhide Ito: Evaluation of Ventilation
Efficiency in Local Ventilation System Based on Ventilation Indices NEV
and NEP: J. Environ. Eng.Kyushu Branch. 2017.3

Conclusion

* We believe that the NEV and NEP will provide
useful information to IAQ control.

* We will accumulate the analysis examples of
ventilation design.




Thank you for your attention!




