Some limitations to ventilation/air distribution and some novel air distribution methods.

Mats Sandberg University of Gävle Sweden msg@hig.se

Osaka March 8th 2017

A ventilation system delivers a flow rate of air which is less contaminated than the indoor air

Flow rate is the basic physical property and therfore it is natural to quantify the performance of a ventilation system in terms of a *flow rate*.

A ventilation company deliver a fan which can transport a certain flow rate into a room. Sometimes they say that they deliver a *ventilation capacity*

From the perspective of ventilation this flow rate provides a $\textit{dilution capacity}\;$ of a contaminant*

* By a contaminant is ment a gas, particles, heat......

Topics

-Basic concepts
-Puging flow rate
-Dilution capacity
-Deliver capacity
-Necessary conditions for generating unidirectional flow
-Draft
-Passive chilled beams
-Air distribution by varying flow rates
-Air distribution by colliding jets
-Air distribution as an architectural element

A first introduction to Deliver Capacity Deliver capacity is *not* dependent on

A room is filled with a uniform concentration C_a of a contaminant. Clean air, $C_{in} = 0$, is supplied to the room as a jet.

Question: What is the concentration C(x) in the supplied air at position x in relation to the concentration the ambient?

The concentration is dependent on entrainment ambient air into jet

Draft

People cannot stand draft for a longer time period and thefore people take actions if the draft is not eliminated......

Situations where draft may occur

To eliminate draft a supply device has been converted into a notice board !

Perforated ceilings

Passive chilled beams mounted in ceilings

What opening sizes are required in the ceilings to generate a proper cooiling ?

Reduction in dilution capacity due to a contaminant in the ambient

r =

Deliver capacity

1.Generate a stable jet that penetrates to the target region

2. Evolution of the concentration in the jet relative to the ambient

Loss of supplied air

Isothermal supply. Supply terminal located directly opposite to the extetract terminal

In the figure above about 20 % of the supplied air goes directly from the supply terminal to the extract terminal. I have experinced cases where about 50 % of the the supplied air goes directly from the supply to the extract terminal. When the supplie air is heated it may be worse

Note The figure is from a test made by Professor John Rydberg 1947 . Prof. John Rydberg worked at the Royal Institute of Technology in Stockholm Sweden

Exampel of unstable and stable jets

Large scale effect of oscillating flow The convection loop oscillates

Steady ventilation flow rate A Convection loop is generated

Small scale effect of oscillating ventilation flow Vortices are generated which penetrate into the occupied zone

The stagnation disappears!

