

CRIEPI

R 雷力中央研究所

スカラー輸送方程式の導入(2)

新しいソルバを作成するため、ベースとなるソルバをディレクトリごとコピーし、 別の名前をつける。 \$ cd \$FOAM_SOLVERS/incompressible \$ cp -r pimpleFoam pimpleFoamC

メインルーチンのファイル名を変更。 \$ cd pimpleFoamC \$ mv pimpleFoam.C pimpleFoamC.C

./Make/filesのソルバ名を書き換え。 pimpleFoam.C EXE = \$(FOAM_APPBIN)/pimpleFoam pimpleFoamC.C

EXE = \$(FOAM_USER_APPBIN)/pimpleFoamC

スカラー輸送方程式の導入(3)

スカラー輸送方程式を解くCEgn.Hを作成。

volScalarField kappact("kappact", turbulence->nut()/Sct); //渦拡散係数、Sctの設定は後述 kappact.correctBoundaryConditions();

volScalarField kappacEff("kappacEff", turbulence->nu()/Sc + kappact); //拡散係数十渦拡散係数

fyScalarMatrix CEon

fvm::ddt(C) + fvm::div(phi, C) - fvm::laplacian(kappacEff, C)

CEqn.relax(); //緩和係数の設定 CEqn.solve();

© CRIEPI

R電力中央研究所

5

スカラー輸送方程式の導入(4)

pimpleFoam.Cから読み込む。

while (pimple.loop()) #include "UEqn.H"

> // --- Pressure corrector loop while (pimple.correct())

> > #include "pEqn.H"

if (pimple.turbCorr())

turbulence->correct();

#include "CEqn.H"

R電力中央研究所

6

スカラー輸送方程式の導入(5)

createFields.Hに以下を追加。

Info<< volScal	"Reading field C¥n" << endl; arField C
(<pre>IOobject (</pre>
);	
singleP	haseTransportModel laminarTransport(II phi):

#include "readTransportProperties.H" //ケースディレクトリのconstant/transportPropertiesの読み込み

© CRIEPI

スカラー輸送方程式の導入(6)	ケースの設定
readTransportProperties.Hを作成 // Laminar Schmidt number dimensionedScalar Sc(laminarTransport.lookup("Sc")); // Turbulent Schmidt number	1. ケース/constant/transportPropertiesにシュミット数を追加 sc Sc [0 0 0 0 0 0 0] 0.9 Sct Sct [0 0 0 0 0 0 0] 0.7
dimensionedScalar Sct(laminarTransport.lookup("Sct"));	2. ケース/0ディレクトリ内にCの初期条件、境界条件設定ファイルを作成。
ビルド [©] wmaka	3. ケース/system/fvSchemesで、スカラー輸送方程式の離散化スキームを設定。
▶ wmake	4. ケース/system/fvSolutionsで、スカラー輸送に対する代数方程式の解法を設定。
RIEPI 9 配電力中央研究所 その他	© CRIEPI R電力中央研究
・煙突からの放出を考える場合は、煙突の吐出面を固定端境界として濃度を与え ればよい。(濃度 × 流速 × 面積が放出量となる) ・空中放出の場合、以下を参考にソース項を実装する必要がある。	
今野先生の「輸送方程式のソース項の実装」を参照。 https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC MQFjAB&url=http%3A%2F%2Fwww.opencae.jp%2Fraw-attachment%2Fwiki%2FOpenCAE-User- Group- archive%2F201204210FBeginner.pdf&ei=OWG_VPL3Ko738QW2gYHYCw&usg=AFQjCNEfKFpQ 080BHS8POjxHw339NGHYUg&sig2=dpVxgJZDRpNVfdAaQ8sitQ	
	煙突ダウンウォッシュ問題への適用

背景

or

Tip vortices

有効高さ

© CRIEPI

R電力中央研究所

実験による上昇過程の再現

R電力中央研究所

話は変わりますが・・・

風洞実験においても、発電所周囲の排ガス拡散予測については、有効 高さを予め計算し、水平方向に放出する方法が用いられることが多い。 → 主にレイノルズ数とフルード数による制約のため。 (排煙レイノルズ数,円筒レイノルズ数)

円筒レイノルズ数が臨界レイノルズ数(2x105)を超えると、剥離域は小 さくなり、煙突ダウンウォッシュは緩和される。

排ガスに浮力が入るとフルード数の相似が必要。ただし、排ガスの運動 量の相似も満たさなければいけないので、密度を変化させることができ ず、実験風速をかなり遅くする必要がある。

O-type Fine Mesh (OF)

© CRIEPI

R電力中央研究所

23

OC

0

5

10

x/D

15

20

12 -

9

Z/D

地表濃度分布は高解像度格子の方が高くなる。

圧力分布(吐出速度)

煙軸上昇軌跡はUMのみ大きく異なる。

© CRIEPI

27

15

12

0

Z/D

 \cap

0

5

10

x/D

15

ℝ電力中央研究所

R電力中央研究所 解像度の影響 tip vorticesの傾き?

尼電力中央研究所

29

剥離域の過小評価の要因(2)

2. 数值振動

<u'v'>の分布

数値振動による擾乱により運動量の乱流輸送?

剥離域の過小評価の要因(1)

1. 壁面せん断応力の過小評価

尼電力中央研究所

30

剥離域の過小評価の要因(3)

3. 数值粘性

数値粘性により壁面の速度勾配が過小評価。 せん断応力が小さくなり剥離が起こりにくくなる。

IE電力中央研究所

改善策

1. 壁面応力モデルを使用する。

2. 高次の離散化スキームを使用する。 →非構造格子には難しい。

3. レイノルズ数に応じて所定の位置で強制的に剥離させる。

風洞実験との比較

境界層中の拡散 煙突内径:6mm 煙突外径:8mm 煙突高さ:60mm 吐出速度:1.43m/s 煙突高さ水平風速:1.43m/s

Ô	CRIEPI
---	--------

R電力中央研究所

34

R電力中央研究所

© CRIEPI 33

R電力中央研究所

気流場(平地実験との比較)

OFは計算コストの観点から適用できず。 UMの場合最大着地濃度が30%超の過小評価 **R**電力中央研究所

その他の煙源の設定

 1. 煙突周囲の格子タイプや格子解像度により、剥離位置や後流の大きさ は大きく変化する。

剥離位置に影響を与える要因は、粗い格子による壁面せん断応力の過小 評価、数値粘性による運動量の拡散、数値振動による運動量の乱流輸送 である。

2. 煙突後方の剥離を正確に再現できなければ、地表濃度を精度よく求めることができない。対策として、壁面応力モデルなど高精度の壁面モデルの利用が考えられる。

3. 煙源の設定によって,最大着地濃度に10%~20%程度の差が生じ得る。ただし、濃度を過大評価する要因と過小評価する要因があり、それらが 打ち消し合われている。

CRIEPI