WRF を用いた都市化による降雨変動解析

Analysis the influence of urbanization on the precipitation by WRF model

O市原 史浦(大阪大学) 近藤 明(大阪大学) 井上 義雄(大阪大学)
Kundan Lal Shrestha (大阪大学) 嶋寺 光(大阪大学)
Shiho Ichihara*¹ Akira Kondo*¹ Yoshio Inoue*¹ Kundan Lal Shrestha*¹ Hikari Shimadera*¹
*¹Osaka University

Abstract: This paper describe the influence of the urbanization in Kinki region on urban climate. Numerical simulations of urban climate from Aug. 1 to 31, 2007 were carried out by using WRF meteorological model with a single-layer urban canopy model under the conditions of 1)no urban area(NOURB), 2)urban area without anthropogenic heat(URB-NOAH) and 3)urban area with anthropogenic heat(URB-AH). By comparing the simulations of the three scenarios, the mean near-surface temperature in URB-NOAH rose, and in URB-AH additionally rose. The mean wind speed in URB-NOAH and URB-AH decreased due to urban buildings. Precipitation in URB-NOAH increased, and in URB-AH additionally increased.

1. 研究の背景と目的

我々は都市が発展するにつれて様々な便益を享受して きた。しかしながら、都市が発展するにつれて土地利用 形態の変化や人間活動の結果による人工排熱などの影響 により、ヒートアイランドに代表されるように都市気候 の変化が報告されており、気象庁の観測結果では、1931 年から 2009 年の間で平均気温が東京では 3.3℃/100 年、 名古屋では 2.9℃/100 年、大阪では 2.9 度/100 年上昇して おり、都市化の影響が少ないと考えられる国内 17 地点平 均の 1.5℃/100 年と比べ、都市化の影響により気温が上昇 していると考えられている。また、地球温暖化の影響に よる降水量の増加、特にスコールのように短時間で局所 的な降雨の増加による都市洪水といった都市型災害にも 非常に関心が集まっており、災害の観点からも降雨の動 向を知ることは重要である。

2. モデルの計算

本研究で使用したモデルはメソスケール気象予測モデ ルWRF(The Weather Research and Forecast)にKusakaら⁵⁾の 開発したUCM(single-layer urban canopy model)を組み込ん だモデルである。

2.1 WRF モデルの概要

WRF モデルは、次世代のメソスケール計算気象予測シ ステムであり、気象の予測及び大気の研究に役立てるた めに NCAR(米国大気研究センター)と NCEP(米国環境 研究センター)を中心に米国で共同開発された。このモ デルの特徴は並列のダイナミカルコア、3 次元変数のデ ータ同化システム、コンピュータによる並列処理、シス テムの伸張性を可能とするソフトウェア構築となってい る。WRF では数多くの物理過程オプションが用意されて おり、ユーザーは個々の目的に応じて適切な物理過程オ プションを選択することができる。主な物理過程は雲物 理過程・積雲過程・PBL 過程・地表面過程・放射過程に 大別され、それぞれに複数のオプションが用意されてお り、各物理過程は他の物理過程と相互に影響し合ってい る。Table 1 に本研究で使用した WRF のパラメータスキ ームを示す。

Table 1 : WRF parameters and schemes

PARAMETER/SCHEME	MODEL SETTING
Nesting	One-way
Vertical grid	24 full eta levels with top level at 100hpa
Microphysics	WSM 5-class scheme
Cumulus	Kain-Fritsch scheme
Boundary layer	YSU scheme
Land surface	Noah land surface model
Longwave radiation	PRTM scheme
Shortwave radiation	Dudhia scheme
Domain-1 size	145×145 mesh with 9-km mesh size
Domain-2 size	97×106 mesh with 3-km mesh size
Domain-3 size	91×91 mesh with 1-km mesh size
Simulation period	August 1-31, 2007

2.2 UCMの概要

UCMは、Kusakaら⁵によって開発された、都市表層、大 気間の物質及び熱の移動に関する縦方向のモデルである。 このUCMは、天空率の減少や建築物の壁面の効果やキャ ノピー層内における放射の反射・建築物都市の凹凸効果 を再現するより効果的なモデルである。この都市キャノ ピーモデルは都市キャノピー層を鉛直方向に解像しない ため、単層都市キャノピーモデルといわれている。この モデルは、開発中であるWRFモデルに公式採用され多く の研究で利用されている。WRF内におけるUCM中の都市 部は、Figure 1 に示すように3カテゴリに分類し、それぞ れのカテゴリ別に異なる建物の高さや、建蔽率などのパ ラメータを与えた。

Figure 1 : Sub-categories of urban land-use in model for Kinki region.(Domain-3)

2.2 計算領域と計算期間

3 つの計算領域をネスティングした。Domain1(D1)は、 本州全体を含む領域で、格子幅9km、格子数145×145 で ある。Domain-2(D2)は、近畿圏を含む領域で、格子幅3km 、 格子数97×106 である。Domain-3(D3)は、北緯34.72 度、 東経 135.5 度を中心とした大阪府とその周辺を含む評価 対象領域で、格子幅1km 、格子数91×91 である。Figure2 にD3の評価領域と気象観測所の位置を示す。鉛直方向は、 地表面から上空100hPa までを24 層に分割し第1層が約 25m、第2層が65m である。計算期間は2007 年7月31 日 0:00(UTC)~9月1日0:00(UTC)とし、評価期間を2007 年8月1日0:00(UTC)~9月1日0:00(UTC)とした。また、 D3の境界条件にはD2の計算結果、D2の境界条件には D1の計算結果を使用した。

2.3 計算条件

3つの異なる条件で、1)NOURB(都市化していないケース)、2)URB-NOAH(都市化し人工排熱を考慮しないケース)、3)URB-AH(都市化し人工排熱を考慮するケース) 計算を行った。都市化しなかった場合の土地利用は、WRF 内でUSGS(米国地質調査所)が公開しているGTOPO30 の土地利用パラメータの都市域('Urban and Built-Up Land')を農業耕作地('Irrigated Cropland and Pasture')と変 更した。人工排熱に関しては鳴海ら[®]が作成した民生部 門・産業部門・交通部門の各部門別エネルギー消費量を 基にして、排熱形態別および月・時刻別に第3次地域標 準メッシュ(約1km四方)単位で近畿圏全域の人工排熱 データベースを用い、アーバンキャノピーで設定されて いる都市部の3つのカテゴリ別に、それぞれの排出量を 算定し、WRFに組み込んだ。計算結果はURB-AHと気象 観測所11地点における観測データを比較し精度検証を行 い、1)~3)の計算結果を比較することで土地利用の変化・ 人工排熱による気象の変動を検証した。

Figure 2: Computational domain(Domain-3) and observation sites

3. 計算結果と考察

WRF による地表付近の気象予測結果との比較には、 D3 内の気象観測所 11 地点(三木、和歌山、神戸、熊取、 豊中、堺、大阪、八尾、枚方、京都、奈良)における観 測値を用いた。計算値は、気温は地上2m、風速は地上 10mの結果を用いた。

D3 内の気象観測所 11 地点における観測値の平均およ び WRF 計算値(NOURB、URB-NOAH、URB-AH)に ついて, Figure 2 に気温,風速の日変化、そして Figure 3 に日降水量を示す。URB-AH と観測値との比較で、気温 に関しては1ヶ月間を通して計算値の方が低くなってい るが、変動の傾向は計算でよく再現できている。風速に 関しては1ヶ月間を通して過大評価されている。NOURB と URB の比較で、気温に関しては月間を通して特に夜 間における気温の上昇が見られ、都市の地表面は日没後 も大気を暖めるという都市の熱収支の特徴を表現できて いると考えられる。また、URB-AH と URB-NOAH を比 べると、気温が上昇し、人工排熱の影響による昇温効果 も示されている。風速に関しては、NOURB と URB の比 較では、減速傾向が見られ、人工構造物による風速の減 速が再現されている。日降水量に関しては、3 つの計算 の違いがあまり見られない。計算では地点降雨の再現性 に関しては、まだ多くの課題があるためと考えられる。

Figure 4に URB-NOAH のケースと NOURB のケース の月積算降水量の空間分布の差分を示す。都市域あるい はその周辺で降水量は増加傾向にあり、特に大阪周辺で 降水量が増加し、奈良盆地周辺で降水量が減少している。 これは、都市化による風速の減速により雨を降らせる積 雲が内陸部まで流れなかったためではないかと考えられ る。

Figure 5 に URB-AH のケースから URB-NOAH のケー スの月積算降水量の空間分布の差分を取り、人工排熱の 影響を調べる。これより、都市部における人工排熱によ り、特に大阪北部で降水量が増加していることが分かる。 本研究では風速・風向の空間分布を調べていないため、 断定はできないが、都市で発生した積雲を移流により大 阪北部へ運んだのではないかと考えられる。

しかしながら、これらの計算は2007年8月の1ヶ月間 だけを対象とした計算なので、本研究で得られた都市化 による降雨影響については、長期的な期間の計算を行い、 比較することが必要である。

Figure 2 : Time series of observed and WRF-predicted daily mean temperature and wind-speed at the meteorological observatories in Kinki region(D3)

■ NOURB ■ URB-NOAH ■ URB-AH ■ OBS

Figure 3 : Time series of observed and WRF-predicted daily precipitation at the meteorological observatories in Kinki region(D3)

Figure 4 : Influence of urban land-use on the accumulated precipitation (the URB-NOAH case minus the NOURB case)

4. まとめと今後の課題

本研究では、都市化が気象に与える影響、特に降雨に ついて定量的に評価するため、WRFモデルを用いて、都 市化し土地利用が変化した場合としていない場合、さら に都市化した場合に人工排熱の有無の条件を設定し、 2007年度8月の1ヶ月間を対象にシミュレーションを行 った。そして、シミュレーションの結果より、都市化し た場合、気温上昇や降水量の増加、さらに風速の減速な どといった結果が得られた。また、人工排熱を考慮した 場合も、気温上昇や降水量の増加が見られた。また、都 市域で降水量が増加したのは、風速が弱まり積雲が内陸 部まで移動しなかったからだと考えられる。今後、風向・ 風速の空間分布と降雨の空間分布の関係を調べることが 重要となる。

また、本研究では 2007 年の 1 年間のみを対象とした が、都市化による降雨影響を考える上では、長期的な解 析を行うことも必要である。

モデルにより気温は概ね再現できたが、風速に関して

は、過大評価の傾向がある。一般的に WRF モデルでは、 地上風を過大評価する傾向にあり、降雨影響と風速の過 大評価の関係については今後考えていかなければならな い。

参考文献

1)気象庁 HP

2)Ning Zhang, Zhiqiu Gao, Xuemei Wang, Yan Chen, "Modelong the impact of urbanization on he local and regional climate in Yangtze River Delta, China"

- 3)Kimura, F., and S, Takahashi. "Climatic effects of land reclamation in Tokyo Bay – Numerical experiment. Energy and Building, 15/16(1991),pp.147-150
- 4)Kusaka, H., Kimura, F., Hirakuchi, H., and Mizutori, M. "The Effects of Land-Use Alteration on the Sea Breeze and Daytime Heat Island in the Tokyo Metropolitan Area" Journal of the Meteorological Society of Japan, 78 (2000), pp.405-420
- 5) Kusaka, H. and F. Kimura, "Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using mesoscale model coupled with urban canopy model," Journal of Applied Meteorology, 43 (2004), pp.1899-1910.
- 6)鳴海大典、大谷文人、近藤明、下田吉之、水野稔、都市にお ける人工排熱が都市熱環境に及ぼす影響:都市熱環境評価モ デルを用いたヒートアイランド現象の改善策に関する検討 その1、日本建築学会計画系論文集 562(2002) pp.97-104
- 7)S. A. Changon Jr. ed., METROMEX : A review and summary. Mteor. Monogr., American Meteorological Society, 40(1981),pp.181
- 8) 日下博幸、羽入拓朗、縄田恵子、古橋奈々、横山仁、東京 都で観測された局地豪雨の実態調査:2002 年8月2日および 2004 年8月10日の事例の比較解析、日本ヒートアイランド 学会論文集 5(2010)
- 9) Kundan Lal SHRESTHA "Water Resource Assessment of Yodo River Basin Using Coupled Hydrometeorological Modeling Approach
- 10)日下博幸、西森元貴、安成哲三、最高・最低気温偏差の季節 性を利用した都市化に伴う気温上昇率の推定

http://ci.nii.ac.jp/els/110001813997.pdf?id=ART0001960378&type =pdf&lang=jp&host=cinii&order_no=&ppv_type=0&lang_sw=& no=1298023299&cp=

11)日下博幸、都市気候モデリング研究の取り組みと今後の課題 http://www.metsoc.jp/tenki/pdf/2008/2008_04_0011.pdf