CFD 解析を用いた居住空間を効率的に冷却する放射冷房のパネル配置の検討

Research into panel layout of CRCP systems that efficiently cools living space using CFD analysis

学生会員 ○西本 啓祐(大阪大学) 正会員 松尾 智仁(大阪大学)
正会員 嶋寺 光(大阪大学) 正会員 近藤 明(大阪大学)
Keisuke NISHIMOTO^{*1} Tomohito MATSUO^{*1} Hikari SHIMADERA^{*1} Akira KONDO^{*1}
*¹ Osaka University

Cooling radiant ceiling panel (CRCP) systems have been proven to potentially provide an improved thermal environment. This system has been shown to increase cooling capacity by open-type installation of CRCP systems. In this study, three types of radiant panel layout for open-type installation of CRCP systems were compared from the view point of average temperature in the entire room and living space using computational fluid dynamics (CFD) simulations. As a result of this research, the following was found. In a situation where people are crowded in a part of the room, placing the radiation panel in the living space can cools the living space more efficiently than evenly placing it.

1. はじめに

現在の冷房システムは、室内の空気を冷却して循環さ せる対流空調が主流になっているが、こうした冷房方式 では冷風が直接体に当たることが多く、不快感を生じさ せる原因となっている。また、送風の過程で発生する騒音 も課題として挙げられている。こうした問題に対する解 決策の一つとして、放射冷房が注目されている¹⁾。中でも、 通常では天井に直接設置される天井放射冷却パネルを、 天井と隙間を開けて設置することで、パネルが空気に面 している面積を増加させて自然対流による熱輸送を促進 させる解放型循環方式放射冷房が、従来の放射冷房と比 較しても高い冷却能力を持つことが確認されている²⁾。

放射冷房はその性質上,部屋に放射パネルを設置する 必要がある。パネル配置は放射冷房の性能に大きな影響 を与えるため,これまでも多くの研究が行われてきた^{3)-5)。} しかし、パネル配置に注目した既往研究の多くは従来型 の放射冷房に焦点を当てており,開放型循環方式におけ るパネル配置の研究はほとんど行われていない。また,日 本のような湿度の高い地域では,結露の発生を避ける必 要性からパネル温度の設定には制限があるため,同じパ ネル温度で高い冷却能力を持つパネル配置を研究するこ とは重要であると言える⁴。

また,放射冷房についての多くの研究 ^{1)~5}は部屋全体 の気温に着目したものであると言える。室内の一部分で のみ作業を行うような部屋(一部のオフィスや講義室) において,居住空間の温度を集中的に下げることを目的 とした研究は少なく,特に開放型循環方式の放射冷房に ついて研究した例は確認できなかった。

そこで本研究では,解放型循環方式の放射冷房におい て,人が室内の一部に密集している条件下でパネル配置 を変更することで,人が主に活動する空間を集中的に冷 却することが可能であるか評価することを目的とする。

2. 方法

2.1 放射モデル

本研究では、OpenFOAM-4.1 を利用し CFD シミュレー ションを行った。OpenFOAM-4.1 には形態係数を用いた 放射モデルが搭載されているが、このモデルでは、吸収率 や反射率を考慮できない。そこで本研究では、面の幾何学 的位置関係、放射率、吸収率、反射率、面での多重反射を 考慮することのできる分配係数放射モデルを開発し、こ れを用いて計算を行った。

形態係数放射モデルは,放射伝熱する面の間の幾何学 的位置関係を表す形態係数を求めることによって放射に よる熱輸送量を求める手法である。形態係数は式(1)によ って定義され,ある面 *j*から出射される全放射流束のう ち,別の面*i*に到達する放射流束の割合を表す。また,放 射によって生じる熱伝達は形態係数を用いて式(2)で求め た。式(1),(2)での変数の定義を,Fig.1,Table.1に示す。

$$F_{ij} = \frac{1}{A_j} \int_{A_j} \int_{A_i} \frac{\cos \theta_{ij} \cos \theta_{ji}}{\pi r^2} dA_i \, dA_j \tag{1}$$

$$Q_{ij} = \sigma \times A_j \times F_{ij} \times (T_j^4 - T_i^4)$$
⁽²⁾

Fig.1 Angle represented by θ in equation (1)

Table.1 Definition of the variables in equation (1), (2)

Variable	Definition	Unit
F _{ij}	View Factor	[-]
A _i	Area of surface <i>i</i>	[m ²]
	Angles formed by the line connecting the	
$ heta_{ij}$, $ heta_{ji}$	surface i and j and normal lines of surface i	[rad]
	and j	
r	Distance between surface i and j	[m]
σ	Stefan-Boltzmann constant	[W/m ² K ⁴]
Т	Surface temperature	[K]
Q_{ij}	Heat transfer	[W]

分配係数放射モデルでは、形態係数を用いて分配係数 を算出して用いており、放射、吸収、反射、透過などを考 慮に入れて計算することができる。本研究では長波放射 のみを対象とするため、透過率を0として計算を行った。 放射率が波長によらず一定であると仮定し、式(3)、(4)に 示す関係式から吸収率、反射率を算出した。式(5)は面 i か ら出射される放射熱流束を表している。式(6)は面 i に入 射する放射熱流束を表している。式(7)に示すように面iが 受ける正味放射熱流束は式(5)と式(6)の差で表される。

式(6)で使用したD_{ij}が分配係数行列であり,式(8)はその 定義式を表している。この式は循環方程式であるため,分 配係数行列を求めるには繰り返し計算を行うことが必要 である。各式の変数の定義を Table.2 に示す。分配係数を 利用した場合に考慮される放射について Fig.2 に示す。

$$\boldsymbol{\varepsilon} = \boldsymbol{\alpha}$$
 (3)

$$\alpha + \tau + \rho = 1 \tag{4}$$

$$Q_{Ei} = \varepsilon_i \sigma T_i^4 \tag{5}$$

$$Q_{Ii} = \sum_{j} \left(\frac{A_i}{A_j} D_{ij} Q_{Ej} \right) \tag{6}$$

$$Q_{Ni} = Q_{Ii} - Q_{Ei} \tag{7}$$

$$D_{ij} = \alpha_j F_{ij} + \sum_{k=1}^N D_{kj} \rho_k F_{ik}$$
(8)

Variable	Definition	Unit
ε	Emissivity	[-]
α	Absorptivity	[-]
τ	Transmissivity	[-]
ρ	Reflectivity	[-]
Q_{Ei}	Radiatve heat flux emitted from surface <i>i</i>	[W/m ²]
Q _{Ii}	Incident radiative heat flux to surface <i>i</i>	[W/m ²]
Q _{Ni}	Net incident radiative heat flux to surface <i>i</i>	[W/m ²]
D_{ij}	Distribution Factor	[-]

2.2 計算条件

本研究では **Fig.3** に示す形状モデルに対して, **Fig.4** に 示す4種類のパネル配置を組み合わせた single-uniform case と single-biased case と slit-uniform case と slitbiased case をそれぞれ作成し, CFD シミュレーションを 行った。室内の大きさは 6m×10m×2.9m で,外側を壁に 囲まれている。外壁面温度は固定されており,内壁面温度 は,壁内の一次元熱伝導,室内空気との対流熱伝達,室内 壁面との放射熱伝達を考慮して熱収支を解くことで,算 出される。その概要を **Fig.5** に示す。冷房期の室外からの 貫流熱を表現するため,壁面の外部温度は南側を 50°C, 東西は 26°C, 北側を 30°C とした。室内には人を想定した $0.4m \times 0.2m \times 1.2m$ の直方体を $0 \le Y \le 5.8$ [m]の領域に 16 個配置した他,机の天板部分を想定した $1.6m \times 0.8m$ ×0.1m の直方体を 8 個, 2.0m×0.8m×0.1m の直方体 を 1 個配置した。人を模した直方体からは 39.5W/m²の発 熱が発生する。

また、細長い形状のパネルを複数用いることで、1 枚の 大きなパネルを用いるよりも自然対流の成分が大きくな り、冷却能力が高くなることがわかっているため⁵、本研 究でも **Fig.4** の slit-uniform case と slit-biased case のような パネル配置を用いて計算を行い、single-uniform case と single-biased case との比較を行った。slit-uniform case と slitbiased case では $0.8m \times 6m \times 0.1m$ の放射パネルを 5 枚設 置しており、single-uniform case と single-slit case では 4m ×6m×0.1m の放射パネルを1 枚設置している。

放射パネルの表面温度は18℃とし、開放型循環方式を 再現するために、放射パネルは天井から30cm離して設置 している。また、計算では非圧縮性定常流れを仮定し、計 算格子サイズは1辺5cm,格子数は約140万とした。

Fig.4 Panel layouts

(Upper left : single-uniform case, Upper right : single-biased case, Bottom left : slit-uniform case, Bottom right : slit-biased case)

Fig.5 Boundary condition of walls

3. 結果と考察

解析を行った結果について、それぞれのケースにおける Z=1.5m 平面上の温度分布を Fig.6 に、X=3.0m 平面上の温度分布を Fig.7 に、X=3.0m 平面上の空気の流れを Fig.8 に示す。また、各ケースにおける室内全体の平均気 温と、0 \leq Y \leq 6.0 [m]、0 \leq Z \leq 2.0 [m](以後居住空間と呼称する)における平均気温を Fig.9 に示す。

まず, Fig.6 と Fig.7 の結果から, single-uniform case と slit-uniform case では部屋の西側が東側より室温が高く なっていることが確認できる。これは, 部屋の西側に発熱 源や換気の吐き出し口があるためであり, 均一なパネル 配置では西側の方が温度が高くなることがわかる。それ に対し, single-biased case と slit-biased case では部屋 の東側が西側より室温が高くなっており, 居住空間にお ける熱負荷を選択的に除去できていることがわかる。

また, Fig.7 から Fig.8 の結果から,気温が低くなっている場所と下降気流が生じている場所に相関が見られることがわかる。また, single-biased case と slit-biased case は居住空間上で強い下降気流が生じていることが確認できる。

次に Fig.9 の結果について考察する。まず室内全体の平 均気温について、左側の2ケースと右側の2ケースを比 較すると、細長い形状のパネルを複数用いることで、1枚 の大きなパネルを用いるよりも冷却能力が高くなること が改めて確認できる。

また、パネルを西側に寄せた 2 つのケースでは、寄せ ないケースに対して、全体の平均気温と居住空間の平均 気温の両方において気温が低くなるという結果となった。 このことから、パネルの配置を調整することで、人が主に 活動する空間を集中的に冷却し、より多くの熱負荷を除 去できることがわかった。

Fig.6 Temperature distribution in Z=1.5m plane

(Upper left : single-uniform case, Upper right : single-biased case, Bottom left : slit-uniform case, Bottom right : slit-biased case)

Fig.7 Temperature distribution in X=3.0m plane (Top : single-uniform case, second : single-biased case, Third : slit-uniform case, Bottom : slit-biased case)

Fig.8 Air flow in X=3.0m plane (Top : single-uniform case, second : single-biased case, Third : slit-uniform case, Bottom : slit-biased case)

Fig.9 Average temperature

4. 結論

分配係数を用いて放射を考慮したCFDシミュレーショ ンを行い,解放型循環方式の放射冷房において,人が室内 の一部に密集している条件下で放射パネルの配置を変更 することで,人が活動する空間を集中的に冷却すること が可能であるか評価を行った。以下にその結果を示す。

- 人の集中する空間の上に放射パネルを配置することで、居住空間を選択的に冷却することができる
- 熱源付近に集中的に放射パネルを配置することで、 より多くの熱負荷を取り除くことができる

今後の課題としては、空気温度ではなく放射温度で比 較する必要があることや、気温だけではなく快適性の指 標を用いて評価を行うことが挙げられる。

参 考 文 献

- Catalina T, Virgone J, Kuznik F: Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling, Building and Environment, Vol 44, No 8, pp.1740-1750, 2009
- Chiang W-H, Wang C-Y, Huang J-S: Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region, Building and Environment, Vol 48, pp.113-127, 2012
- Shin M S, Kyu N-R, Sang H-P, Myong S-Y, Kwang W-K-S: Enhancement of cooling capacity through open-type installation of cooling radiant ceiling panel systems, Building and Environment, Vol 148, pp.417-432, 2019
- Rhee K, Kim K: A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment, Building and Environment, Vol 91, pp.166-190, 20155)
- 5) 西本啓祐,松尾智仁,近藤明,嶋寺光:開放型循環方式放射冷 房のパネル配置が室内温熱環境におよぼす影響のCFD解析, 第49回空気調和衛生工学会近畿支部学術研究発表会,2020