換気量の変化が室内温熱環境/空気質分布に与える影響の CFD による評価 Evaluation of the Effect of Ventilation Volume on Indoor Thermal Environment and Air Quality by Using CFD

○佐々木 圭 吾 (大阪大学) 松 尾 智 仁 (大阪大学)
 嶋 寺 光 (大阪大学) 近 藤 明 (大阪大学)
 Keigo SASAKI^{*1} Tomohito MATSUO^{*1} Hikari SHIMADERA^{*1} Akira KONDO^{*1}
 ^{*1} Osaka University
 [1 行空白行を挿入する]

Indoor ventilation needs to be enhanced because the standard for indoor CO₂ concentration was not attained in 24.4% of designated buildings according to Ministry of Health, Labour and Welfare. This study conducted CFD simulations to evaluate the effect of ventilation volume on ITE (indoor thermal environment) and IAQ (indoor air quality) in summer and winter. It was found that increasing ventilation volume made ITE worse and IAQ better in both seasons. In addition, by operating air conditioners to offset increased heat load because of the enhanced ventilation, ITE was effectively improved in summer, but not in winter.

1. はじめに

厚生労働省によると、室内 CO₂含有率に係る建築物衛 生管理基準に違反している特定建築物の割合は、令和 2 年時点で 24.4%と報告されており¹⁾,換気強化の必要性が 示されている。一般に、室内の換気を強化したとき、外気 の流入量が増加し室内空気質は改善されるが、特に夏季 と冬季においては外気負荷が増加するため、室内温熱環 境は悪化する。そこで、換気強化と同時に、増加した外気 負荷を解消する空調を行えば、室内環境のさらなる改善 が望める。本研究では実空間を対象として、夏季と冬季に おける換気量の増加が室内温熱環境および室内空気質に 与える影響を CFD シミュレーションによって評価し、さ らに外気負荷の増加を解消する空調を調査する。

2. CFD モデル

2.1 モデル概要

本研究では対象実空間を大阪大学工学部/工学研究科 M3棟211とした。(以下M3-211と記す。)同講義室を対 象とした CFD シミュレーションについては松尾ら²⁾が測 定実験との比較を行っており、概ね良好な一致を見てい るため、本研究で用いる CFD モデルは同講義室内の温熱 環境を概ね良く再現できると考えられる。対象実空間 M3-211の X-Y 図を Fig 1 に示す。M3-211には空調機と 全熱交換器が各 4 か所ずつ設置されている。本研究の便 宜上、空調機には AC1~AC4 と名前を振り、全熱交換器 の吹き出し口には 1~4の番号を振った。空気質解析にあ たって、M3-211の定員の 2/3 である 66 人の学生を想定 し、それぞれからの CO₂排出を設定した。M3-211の Y-Z 図を Fig 2 に示す。

Fig3に、空調機と全熱交換器の吹き出し方向、角度を示 す。空調機の吹き出し方向は、空調機の吹き出し口4か 所についてすべて、水平を0°として60°の角度で下向 きに吹き出すように設定し、全熱交換器の吹き出し方向 は、吹き出し面を4分割して、それぞれが斜めに吹き出 すように設定し、吹き出し角度は水平を0°として45°

の角度で下向きに吹き出すように設定した。

Fig.3 Angles of inlets of Air Conditioner and Total Heat Exchanger

2.2 計算条件

Air Conditioner

Total Heat Exchanger

本研究の CFD 計算には OpenFOAM-4.1 を使用した。 非圧縮性流体を仮定し、乱流モデルに標準 k-ε モデルを使 用し、温度変化による浮力を考慮するため Boussinesq 近 似を導入した。Table1に本研究の計算ケースを示す。夏 季冬季で換気風量をカタログ値としたケース、20%増加 させたケース、換気量増加時の外気負荷を解消する空調 設定を行ったケースを行った。SMR20R と WTR20R では、 換気量増加時に増加した外気負荷を解消する空調吹き出 し温度を計算し設定した。

Table 1 Calculation cases

Season		
Ventilation	Summer	Winter
catalog value	SMR00	WTR00
650×4 [m ³ /h]	(base case)	(base case)
20% up 650×1.2×4 [m³/h]	SMR20	WTR20
20% up (offset heat load) 650×1.2×4 [m ³ /h]	SMR20R	WTR20R

SMR00の境界条件を Table 2 に、WTR00の境界条件を Table 3 に示す。空調機および全熱交換器の吹き出し風量 はそれぞれカタログ値を参照した。また、空調機 4 か所 と全熱交換器 4 か所の境界条件はそれぞれ統一した。壁 面温度はすべての面について統一し、机や椅子、教卓など の物体はすべて断熱条件とした。

Table 2 Boundary conditions of SMR00			
	inlet volume [m ³ /h]	inlet	outlet
		temperature	volume
		[°C]	[m ³ /h]
AC1~	750	20	750
AC4	750	20	750
1~4	650	formula(1)	gradient 0
	wall direction	temperature [°C]	
	east, west,	26	_
	east, west, south, north	26	_
	east, west, south, north objects	26 thermal insulation	

Table 3 Boundary conditions of WTR00			
	inlet volume [m ³ /h]	inlet	outlet
		temperature	volume
		[°C]	[m ³ /h]
AC1~AC4	750	36	750
1~4	650	formula (1)	gradient 0
	wall direction	temperature [$^{\circ}$ C]	
east, west,		22	
	south, north	22	
	objects	thermal insulation	

全熱交換器の吹き出し温度は、式(1)により決定される。 式(1)で使用した変数の定義を Table 4 に示す。式(1)にお ける外気温は、気象庁より夏季ピークの 8 月、冬季ピー クの2月の2022年度日平均気温を使用し、それぞれ30 ℃、 5.5 ℃とした。交換効率は 0.6 とした。

$T_{THE_inlet} = \eta T_{room} + (1 - \eta)T_{out}$	(1)
Table 4 variable definitions	

variable	definition	unit
T_{THE_inlet}	inlet temperature of total heat exchanger	[K]
T_{room}	room temperature	[K]
T _{out}	outside temperature	[K]
η	exchange efficiency	[-]

本研究では湿度輸送を考慮していないため,熱負荷は 顕熱負荷のみ考慮した。外気負荷,空調負荷の計算式を式 (2)に示す。式(2)で使用した変数の定義を Table 5 に示す。 空気密度と空気比熱については,空気温が 20 ℃の時の値 である $c_a = 1.0 \times 10^3$, $\rho_a = 1.2$ を採用した。

 $Q_{THE_s} = V c_a \rho_a |T_{inlet} - T_{outlet}|$ Table 5 variable definitions
(2)

variable	definition	unit
Q_{THE_s}	sensible heat load	[W]
Q_{AC_s}	amount of sensible heat removal	[W]
V	inlet volume	[m ³ /s]
Ca	air specific heat	[J/kg/K]
$ ho_a$	air density	[kg/m ³]
T _{inlet}	inlet temperature of Air Conditioner	[K]
T _{outlet}	outlet temperature	[K]

居住者による CO_2 排出については、一般に、安静にし ている成人男性の呼気に含まれている CO_2 量は 15~20 L/h であるため、室内の居住者一人あたりから 20 L/h の CO_2 排出を考慮した。人体発熱はないものとした。

3. 計算結果

先述した通り, M3-211 は階段教室であるため,居住者の呼吸域を考慮して,水平断面の結果は床から高さ0.9mの結果を3つに分けて示す。

3.1 SMR00, SMR20, WTR00, WTR20の計算結果 Fig.4 に SMR00, SMR20の水平および鉛直の温度分布 と CO2 濃度分布を示す。鉛直断面は,外気の動向を示す ために室内にある空調機群のうち全熱交換器の吹き出し 口のみ反映されている x = 5.6 m の断面を示した。対象空 間の全熱交換器の吹き出し口は窓側に並んで設置されて いるため,窓側の温度上昇が顕著に示された。また,窓側 後方の CO2 濃度が著しく減少しているのは,換気風量が 増加し,窓側の居住域まで外気が行き届くようになった ことによるものである。SMR00 と SMR20 の室内平均温 度はそれぞれ 24.2 ℃, 24.6 ℃となり,換気量の増加が温 熱環境を悪化させていることが示された。SMR00, SMR20 の室内平均 CO2 濃度はそれぞれ 783 ppm, 721 ppm となり,室内空気質が改善されていることが示された。

Fig.4 horizontal distributions of temperature and CO₂ concentration, vertical distributions of temperature (SMR00, SMR20)

Fig.5 に WTR00, WTR20 の水平および鉛直の温度分布 と CO2 濃度分布を示す。鉛直断面は,外気の動向を示す ために室内にある空調機群が全て反映されている x = 9.3 m の断面を示した。換気量が増加すると床の高さが低い 室内前方に外気が移流し,室内前方の呼吸域の温度が低 下した。また,室内下方を移流する外気量が増加して,空 調機からの暖気にかかる浮力が強くなり,暖気が衝突し ている箇所の温度が上昇した。WTR00, WTR20 の室内平 均温度はそれぞれ 24.9 ℃, 24.2 ℃となり,換気量の増加

が温熱環境を悪化させていることが示された。WTR00, WTR20の室内平均CO2濃度はそれぞれ822ppm,758ppm となり,室内空気質が改善されていることが示された。夏 季と比較して、換気量に対するCO2濃度が高濃度となっ ているのは、全熱交換器からの吹き出し風が低温のため 室内下方に沈下し、その結果空調機の吸い込み口に外気 が届かず、空調機の還気に含まれるCO2量が増加したこ とによるものと考えられる。

Fig.5 horizontal distributions of temperature and CO₂ concentration, vertical distributions of temperature (WTR00, WTR20)

3.2 Case7~Case10 の境界条件

熱負荷および空調吹き出し温度の計算には2章の式(2) より各ケースにおける空調機・全熱交換器の吹き出し温 度および吸い込み温度が必要になるが、今回はそれぞれ CFD計算の後半5000ステップの平均値を使用した。また 外気負荷の増加分を加えた空調負荷(空調吹き出し温度) を算出する際、空調吸い込み温度の値は一定値とする。

SMR00 における 4 か所の全熱交換器による外気負荷は 1973 W となった。SMR20 における 4 か所の全熱交換器 による外気負荷は 2471 W となった。また空調機の処理熱 量は 4554 W となった。SMR00 から SMR20 にかけて増 加した外気負荷は 498 W であるため、この外気負荷の増 加分を解消するためには空調吹き出し温度を 0.6 ℃低下 させる必要がある。

WTR00における4か所の全熱交換器による外気負荷は

7053 W となった。WTR20 における 4 か所の全熱交換器 による外気負荷は 8236 W となった。また空調機の処理熱 量は 10593 W となった。WTR00 から WTR20 にかけて増 加した外気負荷は 1199 W であるため、この外気負荷の増 加分を解消するためには空調吹き出し温度を 1.2 ℃上昇 させる必要がある。

以上の結果から, SMR20R, WTR20R の境界条件を Table 6 に示す。

Table of Doulidary conditions of Case/, Caseo			
	inlet volume	inlet	outlet
	[m ³ /h]	temperature[°C]	volume[m ³ /h]
AC1~	12.5	19.4 (SMR20R)	750
AC4	12.3	37.2 (WTR20R)	/30
1~4	650×1.2	formula(1)	gradient 0

3.2 SMR20R, WTR20R の計算結果

Fig.6 に SMR00, SMR20, SMR20R の水平および鉛直 の温度分布を示す。SMR20R の室内平均温度は 24.3 ℃と, SMR00 の室内平均温度の 24.2 ℃程度までの減少が確認 され,温熱環境の改善が示された。これは温度差による浮 力によって空調機から吹き出される冷気が呼吸域まで沈 下するため,空調機の吹き出し温度を低下させた際に,換 気量増加時の温度上昇をダイレクトに冷却することが可 能であるからである。

Fig.6 horizontal and vertical distributions of temperature (SMR00, SMR20, SMR20R)

Fig.7 に、WTR00、WTR20、WTR20Rの水平および鉛直 の温度分布を示す。WTR20Rの室内平均温度はそれぞれ 24.5 ℃となり、WTR00の室内平均温度の24.9 ℃までの 上昇が示されなかった。これは、空調機から吹き出される 温風が、隣り合っている空調機からの温風と衝突してお り、その衝突箇所から温風が室内上部へ上昇しているこ とによるものである。すなわち、空調吹き出し温度を上昇 させても、室内下方を移流する外気との温度差が大きく なり、暖気にかかる浮力が強化されるため、呼吸域まで暖 気が拡散されることなく室内上部へ上昇する。したがっ て、外気負荷を計算し、それを解消する空調吹き出し温度 を設定して室内温熱環境を改善する手法は、冬季におい ては有効ではないと考えられる。冬季において、熱的快適 性や室内空気質をさらに改善するには、室内低位で暖房 や換気を行う置換換気を取り入れることや、全熱交換器 含め空調機群の配置を検討することが有効と考えられる。

Fig.7 horizontal and vertical distributions of temperature (WTR00, WTR20, WTR20R)

4. 結論

本研究の結論を以下にまとめる。

- CFD計算によって、換気量の変化が室内温熱環境/空 気質分布に与える影響を評価し、換気量増加時の外 気負荷を空調機の処理熱量に加えたときの温熱環境 の変化を評価した。
- 2) 換気量の増加は夏季冬季どちらとも室内温熱環境を 悪化させ、室内空気質を改善させた。
- 3) 夏季では空調機から吹き出す冷気が室内下方へ沈下 するため、空調負荷を増加させたとき外気負荷がお おむね解消され、温熱環境の改善が示された。
- 4) 冬季では空調負荷を増加させても、室内下方を移流 する外気との温度差が大きくなり、暖気にかかる浮 力がより強化されるため、外気負荷解消に有効には たらかず、温熱環境の改善が示されなかった。

参 考 文 献

- 1) e-Stat 政府統計の総合窓口 https://www.e-stat.go.jp/
- 2) 松尾 智仁, 鹿山 和真, 嶋寺 光, 近藤 明: ソース・ レセプター関係を用いた空調機群の最適制御手法の 逆推定, 第32回 環境工学総合シンポジウム 2022