Numerical predictions of sulfur and nitrogen depositions through fog in forest areas

Hikari Shimadera1,2, Akira Kondo1, Akikazu Kaga1, Kundan Lal Shrestha1,2, Yoshio Inoue1

1 Graduate School of Engineering, Osaka University
Yamadaoka 2-1, Suita, Osaka, Japan 565-0871
2 Research Fellow of the Japan Society for the Promotion of Science

This paper presented a method to estimate spatial distributions of fog water deposition and corresponding sulfur and nitrogen depositions. A two-dimensional fog deposition model (FDM) to predict turbulent fog water flux was developed. The FDM-predicted turbulent fog water flux depended on wind speed and parameters on forest. Comparisons of FDM with measurement data showed that the model well reproduced the turbulent deposition of fog water during typical fog events in mountainous regions. In order to estimate fog deposition in the Kinki Region of Japan, FDM was utilized with results derived from the 5th generation Mesoscale Model (MM5) and the Community Multiscale Air Quality model (CMAQ) in March 2005. In the mountainous areas, the ratios of fog water deposition to rainfall reached up to 22.5% (mean = 3.4 %). The amount of S and NOy deposition through fog was equivalent to that through rainfall and more than that through dry deposition in some areas. Longer term prediction (1 year ~) is required for further study because the contribution of fog may considerably vary with seasonal variations in meteorology, air quality and vegetation structure.

Key words: Fog deposition model; Acid deposition, Forest; MM5/CMAQ

1. Introduction

Fog is a cloud on the ground surface and reduces the horizontal visibility to less than 1000 m. Fog can be classified into several types, such as radiation fog and mountain fog, in accordance with the formation mechanism. Radiation fog occurs through radiative cooling of humid air masses typically from night to early in the morning on flat terrains and in valleys. Mountain fog mainly occurs through orographic lifting of humid air masses and horizontal advection of low-level cloud to mountain ranges (Klemm et al., 2005).

Fog can affect forest ecosystems in mountainous areas, in which fog occurs more frequently than in other areas. Fog water deposition through the interception of fog droplets by vegetation can be an important part of the hydrologic budget of forests (Vong et al., 1991; Dawson, 1998). Ionic concentrations in fog water are much higher than those in rain water (Neal et al., 2003; Aikawa et al., 2006). Consequently, fog can contribute significantly to the deposition of ionic compounds in mountainous forest areas. The effects of fog may be more pronounced in Japan than in other countries because approximately two-thirds of the land area are covered with forests, most of which are located in mountainous regions.

The amounts of fog water deposition have been measured using a variety of approaches, such as the through fall measurement (Kobayashi et al., 2001) and the eddy covariance method (Burkard et al., 2003; Klemm et al., 2005). Numerical models also have been utilized to estimate fog water deposition. A one-dimensional model developed by Lovett (1984) has been widely used to predict turbulent deposition of fog in various mountain forests (Miller et al., 1993; Baumgardner et al., 2003). Katata et al. (2008) modified a one-dimensional land surface model called SOLVEG to better predict fog water deposition, and showed the modified SOLVEG agreed better with the measurement data by Klemm et al. (2005) than the model developed by Lovett (1984).

The study of fog on a spatial scale requires numerical simulations because few fog monitoring sites exist and fog is highly variable according to regions. Shimadera et al. (2008) applied the 5th generation Penn State University/ National Center for Atmospheric Research Mesoscale Model (MM5) (Grell et al. 1994) version 3.7 to fog simulation for months in the Kinki Region of Japan, and showed that the model well reproduced occurrence of fog. Shimadera et al. (2009) utilized the U.S. Environmental Protection Agency’s Models-3 Community Multiscale Air Quality (CMAQ) modeling system (Byun and Ching, 1999) version 4.7 to estimate contribution of the transboundary transported air pollutants from the Asian...
Continent to fog chemistry in the Kinki Region of Japan. These previous studies made it possible to predict spatial distributions of fog occurrence and ionic concentrations in fog water. Because the deposition process of fog is not considered in the MM5/CMAQ modeling system, a numerical model to predict fog water deposition is required for an estimate of acid deposition through fog.

This paper describes a method to estimate spatial distributions of fog water deposition and corresponding acid deposition. A two-dimensional fog deposition model (FDM) to predict turbulent fog water flux was developed, and compared with the measurement data by Burkard et al. (2003) and Eugster et al. (2006). In order to estimate the spatial distribution of fog deposition in the Kinki Region of Japan, FDM was utilized with the results of MM5/CMAQ predictions by Shimadera et al. (2009).

2. Fog deposition model

2.1 Model structure

Equations to simulate turbulent airflow in and above a forest canopy are based on equations of mean motion and turbulence energy used by Yamada (1982). The horizontal wind direction is assumed to be constant in FDM. An equation of mean motion is.

\[\frac{\partial u}{\partial t} = \frac{\partial}{\partial z} \left(K_m \frac{\partial u}{\partial z} \right) - C_d a_s(z) u |u|, \]

where \(u \) is the horizontal wind component (m s\(^{-1}\)), \(K_m \) is the eddy diffusivity of momentum (m\(^2\) s\(^{-1}\)), \(C_d (= 0.2) \) is the drag coefficient for a forest canopy and \(a_s(z) \) is the one-sided surface area density (m\(^2\) m\(^{-3}\)), which is the sum of the leaf area density (\(a_L(z) \)) and the non-leaf area density. The vertical distribution of \(a_s(z) \) within a canopy is obtained from a function proposed by Kondo and Arakashi (1976) as

\[a_s(z) = \frac{SAI}{h_f} \hat{a}(Z) \quad \text{for} \quad 0 \leq Z = z/h_f \leq 1, \]

where \(SAI \) is the one-sided canopy surface area index (m\(^2\) m\(^{-2}\)), which is the sum of the leaf area index (\(LAI \)) and the non-leaf area index (\(NLAI \)), and \(h_f \) is the forest canopy height, \(\lambda \) is a parameter, \(Z_m \) is the height where \(\hat{a}(Z) \) takes a maximum value, and \(a_m \) is a constant determined to satisfy Eq. (5).

An advection-diffusion equation of the liquid water content of fog (LWC) (kg m\(^{-3}\)) is

\[\frac{\partial LWC}{\partial t} = -u \frac{\partial LWC}{\partial x} - w \frac{\partial LWC}{\partial z} + \frac{\partial}{\partial z} \left(K_m \frac{\partial LWC}{\partial z} \right) - Dep. \]

The deposition term \(Dep \) is given by

\[Dep = f_L a_s(z) \varepsilon_{IM} |u|LWC, \]

where \(f_L \) is the portion of the effective leaf area for deposition of fog droplets and \(\varepsilon_{IM} \) is the impaction efficiency of fog droplet. According to Nagai (2002) and Katata et al. (2008), \(f_L \) and \(\varepsilon_{IM} \) can be expressed by

\[f_L = 1 - \exp \left(-0.4 a_L(z) \Delta z \right) \]

\[\varepsilon_{IM} = \left(\frac{\gamma St}{\gamma St + \alpha} \right), \]

where \(\gamma \) is the surface tension of water, \(St \) is the Stokes number, \(\alpha \) is the fall velocity of droplets, and \(\Delta z \) is the vertical grid size.

Fig. 1. Schematic diagram of FDM.
\[St = \frac{\rho_w \cdot d_p^2 \cdot \nu}{9 \mu \cdot L}, \]

where \(\alpha, \beta \) and \(\gamma \) (\(= 5.0, 1.05 \) and \(1 \) for needle leaf, and \(0.5, 1.90 \) and \(5 \) for broad leaf, respectively) are fitting parameters, \(St \) is the Stokes number, \(\rho_w \) is the density of water (kg m\(^{-3}\)), \(d_p \) (\(= 17.03 LWC \times 10^{-3} + 9.72 \times 10^{-3} \)) is the mean diameter of fog droplet (m), \(\mu \) is the viscosity coefficient of air (kg m\(^{-1}\) s\(^{-1}\)), \(L \) is the characteristic leaf length (m).

Fig. 1 shows the schematic diagram of FDM, where \(u_{bc} \) is \(u \) at the upper boundary, \(LWC_{bc} \) is \(LWC \) above the forest canopy, \(FR_F \) is the fraction of the area covered with forests, \(nx \) and \(nz \) are the number of the horizontal and the vertical grids, respectively. Forests are allocated to the computational area from its horizontal edges according to \(FR_F \). The vertical distribution patterns of \(\alpha_5 \) (\(z \)) and \(u \) within the forest canopy vary with the values of \(\lambda \) (the right side of Fig.1). FDM predicts steady state \(u \) and \(LWC \) for each simulation case. The following settings were used in every simulation cases in this study: \(\Delta x = 40 \) m, \(nx = 50 \), and NLAI was assumed to be 0.5.

2.2 Features of the model

To show features of FDM, calculations were conducted with the following conditions: the atmosphere was neutral, \(u_{bc} = 0.5 \sim 10 \) m s\(^{-1}\), \(LWC_{bc} = 0.0003 \) kg m\(^{-3}\), \(h_c = 18 \) m, \(LAI = 0.1 \sim 10 \), \(FR_F = 0.24 \sim 0.96 \), \(\lambda = 2 \sim 4 \), \(\Delta z = 1.5 \) m, \(nz = 30 \), and forest areas consisted of 100% of needle-leaved trees.

Fig. 2 shows mean values of the fog water deposition velocity (\(V_{Dep} \) = fog water deposition flux/LWC_{bc}) in the computational area plotted against \(u_{bc} \) in the case of \(FR_F = 0.96 \), \(\lambda = 3 \). Since \(\varepsilon_{IM} \) increases with increasing \(u \), \(V_{Dep} \) increases with increasing \(u_{bc} \). When forest areas are thin, \(V_{Dep} \) considerably increases with an increase in \(LAI \), i.e., an increase in available leaf area for fog deposition. As a forest becomes denser, drag force induced by the vegetation surface becomes larger, resulting in smaller \(u \) within a canopy. Therefore, when forest areas are dense, \(V_{Dep} \) does not very increase or can decrease with an increase in \(LAI \).

Fig. 3 shows horizontal distributions of \(V_{Dep} \) in the cases of \(u_{bc} = 10 \) m s\(^{-1}\), \(LAI = 3 \), \(\lambda = 3 \). The largest \(V_{Dep} \) were observed at the windward edge of forest in every case. The values of \(V_{Dep} \) at the edge were 4.1, 2.3 and 1.5 times larger than those in the forest interiors in the cases of \(FR_F = 0.24 \), 0.48 and 0.96, respectively. Dry deposition at forest edges tend to be much larger than that in forest interiors (De Ridder et al., 2004). Such edge effects are also observed in fog water deposition (Kobayashi et al., 2001). Draaijers et al. (1994) indicated that edge effects were pronounced over a horizontal distance of approximately five times of the edge height. The results of FDM agreed with these findings.

2.3 Comparison with field measurement

Measurement data of fog water deposition with high temporal resolutions are preferable to the FDM evaluation. However, such measurement is not conducted in Japan. Therefore, measurement data of fog water deposition from Switzerland (Burkard et al., 2003) and Puerto Rico (Eugster et al., 2006) were utilized for the FDM evaluation.

Burkard et al. (2003) measured the turbulent fog water flux with the eddy covariance method at 45 m on a tower (15 m above the forest canopy) at a site (47°28′49″N, 8°21′05″E, 690 m above sea level) on the Lägeren mountain, approximately 15 km northwest of
Zurich, Switzerland. The vegetation cover around the site is mixed forest dominated by beech and Norway spruce. Fog water flux estimated by FDM was compared with the measurement for from September 2001 to March 2002. LAI around the site in the period was derived from the monthly datasets of the MODIS LAI product (available at http://cliveg.bu.edu/modismisr/index.html). The values of monthly LAI were ranged from 0.7 to 1.7. Calculations with FDM were conducted with the 30-minute measurement data and the following conditions: $h_{fc} = 30$ m, FRF = 1, $\Delta z = 1.5$ m, nz = 30, and forest areas consisted of 50 % of needle-leaved trees and 50 % of broad-leaved trees.

Fig. 4 shows comparisons of FDM with the field measurement at the Lägeren site in Switzerland for accumulated turbulent fog water deposition and 30-minute V_{Dep} plotted against u_{bc}. While FDM-predicted V_{Dep} strongly depended on u_{bc}, measured V_{Dep} was hardly correlated with u_{bc}, particularly when u_{bc} was low. As a result, low correlation ($r = 0.30$) was observed between 30-minute turbulent fog water flux in FDM and in the measurement. The one-dimensional model developed by Lovett (1984) and the modified SOLVEG (Katata et al., 2008) should have difficulty in estimate of fog water deposition at the Lägeren site because the turbulent fog water flux in these models also depend on the horizontal wind speed. Radiation fog dominantly contributed to the turbulent fog water deposition at the Lägeren site (Burkard et al., 2003). Therefore, the discrepancies between FDM and the measurement were mainly attributed to uncertainties of the turbulent fog water deposition process during radiation fog events with low u_{bc}.

Though FDM was not able to accurately reproduce the increase pattern of accumulated fog water deposition, the total fog water deposition in FDM agreed with that in the measurement.

Eugster et al. (2006) measured the turbulent fog water flux with the eddy covariance method at 7.25 m on a tower at a site (18°16′17″N, 65°45′39″W, 1015 m above sea level) in the Luquillo experimental forest in the northeastern part of Puerto Rico during 43 days between 26 June and 7 August 2002. The vegetation at the site consists of broad-leaved elfin cloud forest with the average canopy height of 2.5–3 m. The value of LAI derived from light extinction measurements was 2.1 ± 0.7 (Holwerda et al., 2006). Calculations
with FDM were conducted with the 30-minute measurement data and the following conditions: \(h_{fc} = 3 \) m, \(LAI = 2.1 \), \(FRF = 1 \), \(\Delta z = 0.5 \) m, \(nz = 14 \), and forest areas consisted of 100 % of broad-leaved trees.

Fig. 5 shows comparisons of FDM with the field measurement at the Luquillo site in Puerto Rico for accumulated turbulent fog water deposition and 30-minute \(V_{Dep} \) plotted against \(u_{bc} \). In contrast to the Lägeren site, relatively high \(u_{bc} \) was observed throughout the measurement period at the Luquillo site. Both FDM-predicted and measured \(V_{Dep} \) increased with increasing \(u_{bc} \), which resulted in high correlation \((r = 0.89)\) between 30-minute turbulent fog water flux in FDM and in the measurement. Consequently, FDM well reproduced the increase pattern of accumulated fog water deposition with slight underestimation. Katata et al. (2008) found that the fog water deposition velocity had high correlation with the horizontal wind speed over the forest canopy in both the modified SOLVEG and the measurement data at the Waldstein research site in Germany by Klemm et al. (2005). This finding agrees with the results of comparison of FDM with the measurement at the Luquillo site. Mountain fog occurs very frequently at the Luquillo site due to the orographic lifting of humid air masses advected from the Atlantic Ocean by the northeasterly trade winds (Holwerda et al., 2006). The comparison of FDM with the measurement showed that FDM well reproduced the turbulent deposition of fog water during mountain fog events with relatively high \(u_{bc} \).

The comparisons of FDM with the measurement data showed that FDM had difficulty in predictions during radiation fog events, but well predicted the turbulent fog water flux during mountain fog events. Because mountain fog occurs through advection of air masses, mountain fog events associate with higher wind speeds and more developed turbulent conditions than radiation fog events. In addition, mountain fog is the typical type of fog in mountainous regions (Klemm et al., 2005). These facts indicate that mountain fog is generally more important than radiation fog for the turbulent deposition of fog water onto mountainous forests. Therefore, FDM that captures the turbulent deposition of mountain fog is considered to be applicable to estimate of fog water deposition in mountainous regions.

3. Fog deposition in Kinki Region

3.1 Meteorology and air quality predictions

In order to estimate the spatial distributions of fog water deposition and corresponding acid deposition, FDM was utilized with the results of the MM5/CMAQ modeling system. MM5 is a three-dimensional, nonhydrostatic, terrain-following sigma-pressure coordinate model with a multiple-nest capability, several physics options, and a four-dimensional data assimilation capability. MM5 is widely used to drive air quality models. CMAQ is a three-dimensional Eulerian air quality modeling system that simulates the transport, transformation, and dry/wet deposition of various air pollutants and their precursors across spatial scales ranging from local to hemispheric. For our study, CMAQ was modified to output ionic concentrations in fog water.

The MM5/CMAQ modeling system was applied to the Kinki Region of Japan in March 2005 (Shimadera et al., 2009). Fig. 6 shows the modeling domains consisted of 4 domains from domain 1 (D1) covering a wide area of East Asia to domain 4 (D4) covering most of the Kinki Region. The horizontal resolutions and the number of grid cells in the domains are 54, 18, 6 and 2 km, and 105 \(\times 81 \), 72 \(\times 72 \), 99 \(\times 99 \) and 126 \(\times 126 \) for D1, domain 2 (D2), domain 3 (D3) and D4, respectively. The vertical layers consist of 24 sigma-pressure coordinated layers from the surface to 100 hPa with approximately 15, 50 and 110 m as the middle height of the first, second and third layer, respectively. The meteorology data and ionic concentration in fog water for FDM were derived from the lowest two layers.

Shimadera et al. (2009) compared the MM5/CMAQ predicted meteorology and \(\text{SO}_4^{2-} \), \(\text{NO}_3^- \), \(\text{NH}_4^+ \) concentrations in aerosol, rain
and fog with observation data obtained from meteorological observation by the Japan Meteorological Agency, fog sampling on Mt. Rokko by the Hyogo Prefectural Government, particulate matter sampling by the Osaka Prefectural Government, and acid deposition monitoring by the Ministry of the Environment (MOE) of Japan. The comparisons showed that the model well reproduced the meteorological fields and the long-range atmospheric transport of pollutants in the study region in March 2005. The model generally captured the occurrence of rainfall events and the total amount of rainfall. The model-predicted monthly mean concentrations of acidic compounds in rain were approximately within a factor of 2 of the observed data at the acid deposition monitoring sites in Japan. These findings indicated that the MM5/CMAQ could reasonably simulate acid depositions through rainfall. The model also approximately captured the occurrence of fog and the amount of acidic compounds in fog at Mt. Rokko fog sampling site. Therefore, the results of MM5/CMAQ predictions are applicable to estimate of acid deposition thorough fog. This finding and the comparisons of FDM with the field measurements indicate that estimate accuracy of acid deposition thorough fog by FDM with the results of MM5/CMAQ is probably not much worse than that of acid deposition thorough rainfall by MM5/CMAQ.

3.2 Forest data

Parameters on forest, such as FRF and LAI, are important in FDM as shown in Fig. 2 and 3. For an application of FDM to D4, FRF was obtained from the 100-m land use dataset of the Digital National Land Information (available at http://nlftp.mlit.go.jp/ksj/) prepared by the Ministry of Land, Infrastructure, Transport and Tourism in Japan. LAI was derived from the monthly 1-km dataset of the MODIS LAI product for March 2005. Forest classes, including deciduous needle-leaved forest (DNF), evergreen needle-leaved forest (ENF), deciduous broad-leaved forest (DBF) and evergreen broad-leaved forest (EBF) were determined by using the 1-km vegetation dataset of the 5th National Survey on the Natural Environment (available at http://www.biodic.go.jp/kiso/fnd_f.html) conducted by MOE of Japan.

Fig. 7 shows spatial distributions of FRF, LAI and dominant forest class at each 2-km grid in D4. Forest areas account for 64.8 % of the land areas and 94.6 % of the mountainous areas (means areas with elevations > 500 m above sea level hereafter). DNF, ENF, DBF and EBF account for 0.3, 67.0, 28.5 and 4.2 % of the forest area, respectively. Because March is before or at the beginning of the vegetation growing season in D4, most of the forest areas tend to be thin. The north-eastern areas covered with DBF show the lowest LAI and the southern areas covered with ENF or EBF show relatively higher LAI. The values of LAI were less than 1, 2 and 3 in 22, 66 and 97 % of forest areas.

3.3 Fog water deposition

The fog water deposition in D4 in March 2005 was estimated using FDM with the hourly results of MM5 predictions, the forest data described in 3.2, and the following conditions: $h_f = 18$ m, $Δz = 1.5$ m, $n_z = 30$.

Fig. 8 shows spatial distributions of model-predicted frequency of fog occurrence, fog water deposition and rainfall in D4 in March 2005. The fog frequency, fog water deposition and rainfall generally increased with increasing elevation. Mt. Rokko (Fig. 5) is characterized by its high frequency of fog (Aikawa et al., 2001). The values of fog frequency in large mountainous areas were comparable to or higher than that in Mt. Rokko. While the fog frequency and rainfall showed the highest values in the north-eastern area dominantly covered with DBF, the fog water deposition did not due to the thin vegetation cover. This trend may change in the vegetation growing season. In the mountainous areas, the amounts of fog water deposition ranged from 0 to 78.4 mm (mean = 9.3 mm), while rainfall ranged from 97.2 to 786 mm (mean = 273 mm). Consequently, the ratios of fog water deposition to rainfall at each 2-km grid reached up to 22.5% (mean = 3.4 %). Ratios of fog water deposition to rainfall in temperate mountainous forests in other literatures were 3.4 % at the Lägeren research site in Switzerland (Burkard et al., 2003), 9.4 % at the Waldstein research site in

Fig. 7. Spatial distributions of (a) FRF, (b) LAI and (c) dominant forest class in D4.
Germany (Klemm and Wrzesinsky, 2007), and 34% at the coastal redwood forests in northern California (Dawson, 1998), respectively. The difference indicates that the ratios of fog water deposition to rainfall can considerably vary with changes in associated factors, such as fog frequency, amount of rainfall, wind speed, and vegetation structure. Therefore, the ratios of fog water deposition to rainfall in D4 can be change in the other seasons.

3.4 Acid deposition

Sulfur (S) and reactive nitrogen (NOY = NO + NO₂ + NO₃ + N₂O₅ + HNO₃ + HONO + aerosol nitrate in the present study) depositions through fog were estimated through multiplication of the FDM-predicted hourly fog water deposition flux by the CMAQ-predicted hourly concentration of acidic compounds in fog.

Fig. 9 shows spatial distributions of model-predicted S and NOY depositions through fog water deposition, rainfall and dry deposition in D4 in March 2005. Among the three deposition processes, rainfall contributed the most to S and NOY deposition in D4. In some areas, however, the amounts of S and NOY deposition through fog were equivalent to those through rainfall and larger than those through dry deposition. In the mountainous areas, the contribution ratios of S and NOY deposition through fog to the total deposition at each 2-km grid reached up to 27.4% (mean = 4.6%) and 37.6% (mean = 4.8%), respectively. The contribution of fog deposition can be larger in the vegetation growing season.

Fig. 9. Spatial distributions of predicted (a-c) S and (d-f) NOY depositions through fog, rain and dry depositions in D4 in March 2005.
4. Conclusion

This paper described a method to estimate the spatial distribution of fog water deposition and corresponding acid deposition by using the FDM and MM5/CMAQ modeling system.

FDM was developed to predict turbulent fog water flux in forest areas. The FDM-predicted fog water deposition velocity depended on wind speed and parameters on forest. In comparison of FDM with the measurement data at the Lägeren research site in Switzerland, FDM had difficulty in predictions of fog water deposition velocity due to uncertainties of the turbulent fog water deposition process during radiation fog events with low wind speed. However, the total amount of fog water deposition predicted by FDM agreed with the measurement at the Lägeren site. In comparison of FDM with the measurement data at the Luquillo experimental forest in Puerto Rico, FDM well reproduced the turbulent deposition of fog water during mountain fog events with relatively high wind speed. Because mountain fog is generally more important than radiation fog for the fog water deposition onto mountainous forests, FDM is considered to be applicable to estimate of fog water deposition in mountainous regions. Mechanisms of the turbulent fog water deposition during low wind speed periods should be further investigated for more reliable estimate of fog water deposition.

To estimate fog water deposition and corresponding S and NO$_x$ depositions, FDM was utilized with the results of MM5/CMAQ predictions in the Kinki Region of Japan in March 2005. In the mountainous areas, the ratios of fog water deposition to rainfall at each 2-km grid reached up to 22.5% (mean = 3.4%). In some mountainous areas, the ratios of fog water deposition to rainfall at predictions in the Kinki Region of Japan in March 2005. In the depositions, FDM was utilized with the results of MM5/CMAQ deposition. Be further investigated for more reliable estimate of fog water deposition.

Conclusion

This paper described a method to estimate the spatial distribution of fog water deposition and corresponding acid deposition by using the FDM and MM5/CMAQ modeling system.

FDM was developed to predict turbulent fog water flux in forest areas. The FDM-predicted fog water deposition velocity depended on wind speed and parameters on forest. In comparison of FDM with the measurement data at the Lägeren research site in Switzerland, FDM had difficulty in predictions of fog water deposition velocity due to uncertainties of the turbulent fog water deposition process during radiation fog events with low wind speed. However, the total amount of fog water deposition predicted by FDM agreed with the measurement at the Lägeren site. In comparison of FDM with the measurement data at the Luquillo experimental forest in Puerto Rico, FDM well reproduced the turbulent deposition of fog water during mountain fog events with relatively high wind speed. Because mountain fog is generally more important than radiation fog for the fog water deposition onto mountainous forests, FDM is considered to be applicable to estimate of fog water deposition in mountainous regions. Mechanisms of the turbulent fog water deposition during low wind speed periods should be further investigated for more reliable estimate of fog water deposition.

To estimate fog water deposition and corresponding S and NO$_x$ depositions, FDM was utilized with the results of MM5/CMAQ predictions in the Kinki Region of Japan in March 2005. In the mountainous areas, the ratios of fog water deposition to rainfall at each 2-km grid reached up to 22.5% (mean = 3.4%). In some mountainous areas, the amount of S and NO$_x$ deposition through fog was equivalent to that through rainfall and more than that through dry deposition. The contribution of fog to acid deposition may considerably vary with seasonal variations in meteorology, air quality and vegetation structure. Therefore, long-term prediction (1year−) is required for further study.

Acknowledgements

We are grateful to Werner Eugster for providing the measurement data at the Lägeren research site in Switzerland and the Luquillo experimental forest in Puerto Rico.

This work was supported by Grant-in-Aid for JSPS Fellows.

References

森林地域における霧による硫黄および窒素沈着量の数値予測

嶋寺 光, 近藤 明, 加賀 昭和, Shrestha Kundan Lal, 井上 義雄
大阪大学大学院工学研究科
〒565-0871 大阪府吹田市山田丘 2-1

本論文では, 霧水沈着による酸性物質沈着量の空間分布の予測手法を示した。まず, 森林植生への霧水沈着を予測する数値モデルを開発し, 霧水沈着モデルによる霧水着密度は風速と森林植生密度に依存することを示した。また, 霧水沈着モデルと観測データとの比較により, 霧水着模型が山地における霧水着着量を概ね再現できることを示した。霧水着模型とともに, 数値気象/大気質モデル MM5/CMAQ による 2005 年 3 月の予測結果を用い, 近隣地方における霧水着着量とそれに伴う硫黄および窒素着着量の空間分布を推定した。結果, 山地の森林地域における霧着着着量と降雨量の比は最大 22.5%, 平均 3.4% となった。硫黄および窒素着着量については, 霧による着着量が, 降雨による着着量に匹敵し, 単性着着による着着量を上回る地域も見られた。酸性着着における霧水着着の寄与は, 気象場, 大気環境, 植生構造の季節変動によって変化と考えられるため, さらなる研究のためには, より長期間で予測を行う必要がある。