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Development and Application of Bat Species Identifier Using CNN
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Abstract: Recently, bat has been attracting attention as a great indicator species for an environment monitoring.
If we can identify the species and estimate a distribution and volume of bat activity by analyzing an
“echolocation call” which is ultrasonic wave emitted from bat, the bat observation will be more efficient and
effective significantly. In this study, we developed a high performance bat species identification system using
convolutional neural network. This system obtains precisely and robust identification by converting the call
sound to a spectrogram image. We applied some types of neural network constructions and finally achieved
98 % as overall accuracy for 11 species (except noise). In addition, we examined the system we built to acoustic
monitoring in several types of managed forest to verify an applicability of this method.
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Japanese name Prediction N F-value

Sl S2 S3 sS4 S5 S6 ST S8 S9 SI0 S S12  (41340) (%)

S1: 777avEy 1687 6 5 4 8 1710 99

S2: 2t HayEy 2 644 5 651 99

S3: EEYmayEl 4 2 9038 10 4 53 9111 99

S4: L AKAELFaTEY 4 2 6 1677 4 3 3 1 12 1712 98

L S5 h/vavEy 3 5 7 1301 1 12 1419 98
§ S6:tFfavEy 267 9 276 97
£ S7T:TFvsavw) 3 6 1 1 605 2 5 623 97
T s azisavEy 4 3 3635 42 3684 99
S9: XU HvTavEy 1014 12 1026 99

S10: X HyFavEy 440 12 452 97

SIl: =hrwyFayEy 1423 13 1436 99
S12: /4R GBMET) 9 5 43 10 11 5 5 33 11 13 12 19083 19240 99
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