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Abstract:

Accurate and timely information is essential for efficient road maintenance planning. Current practice mainly
depends on manual visual surveys that are laborious, time consuming, subjective and not frequent enough. We
overcame this limitation in our previous work, by proposing a method that automatically detects road defects in
video frames collected by a parking camera. The use of such a camera leads to capturing the surroundings of the
road, such as sidewalks and sky due to its wide field of view. This unnecessarily reduces the method’s
performance. This paper presents a process that identifies the correct Region of Interest (myROI). myROI
corresponds to the region of the camera’s field of view that corresponds to the road lane, while considering
defect inspection guidelines. We use the theory of inverse perspective mapping (IPM) to map the road frame
coordinates to world coordinates. The camera specifications, and position, lane width and road defect detection
guidelines constitute the parking camera calibration parameters for the calculation of myROI’s span and
boundaries. We performed computational experiments in MATLAB to calculate myROI, and validated the
results with field experiments, where we used a metric tape to measure the road defects. Preliminary results show
that the proposed process is capable of calculating myROI.
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1. INTRODUCTION

According to the International Infrastructure Maintenance Manual (NAMS Group 2006), an asset management
system must have knowledge of the following: 1) existing assets, 2) the assets’ condition, and 3) the level of
service the assets can provide . This shows the importance of road condition assessment, which is a pre-requisite
for designing, planning and determining maintenance programs. In the UK, a report written by the Department
for Transport and the Highways Agency claims there is insufficient road condition data, and gaps exist in the
collected information (National Audit Office 2014).

Current road condition monitoring process consists of the following steps: 1) road data collection, 2) defect
identification, 3) defect assessment, and 4) road condition index (RCI) calculation. Data collection is performed
either manually or automatically. Inspectors walk along the road or drive around the network to look for
irregularities during manual data collection. Vehicles equipped with several sensors, such as laser scanners and
image cameras are utilized for automated data collection.

In the case of manual inspections, all collected data is inserted into the road authority’s database once the
inspection is done. Such data consist of images from the defects found accompanied by qualitative descriptions.
If a defect is repaired on the spot, images from before and after the inspector’s intervention are required. A
description of the action that he/she took is also expected. If it is not possible to repair the defect on the spot, the
inspector characterizes the urgency of the required action. Thus, defect identification and assessment is
performed along with the data collection when it is performed manually. However, it is obvious that it is a
laborious and time-consuming task.

The same holds for the automated data collection, the second and third steps of which are manual. Inspectors
view all collected data on multiple screens and search for defects. Although defect assessment is performed
using well-written guidelines, it is inevitable that the inspector’s subjectivity will influence the process according
to his/her level of experience (Bianchini et al. 2010). The subjectivity of these results is another limitation of the
current practice. Finally, the Road Condition Index (RCI) is calculated for road segments according to the
number, type, and severity of defects encountered. RCI is the metric most often used for prioritizing maintenance
actions.

The main problem that this paper focuses on is the extraction of metrics from the collected data. As
aforementioned, inspectors are using guidelines for identifying defects and categorizing them in levels of
severity. Each defect is described with its different attributes using geometrical characteristics, such as length,
width and depth. In the case of visual surveys, inspectors are using tapes to measure such attributes. In the case
of automatically collected data, the software that accompanies the sensors calculates the metrics automatically,
or inspectors are deriving them manually. Except for the automatically calculated metrics, the other ways of
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performing it are laborious and time consuming.

The goal of this research is to develop a low-cost automated road condition monitoring method to address the
limitations of current practice. The idea is to use crowdsourcing to transition the task of monitoring from road
inspectors to every day road users by transforming them into ubiquitous reporters. In our previous work
(Radopoulou and Brilakis 2015), we proposed the use of parking cameras, a sensor that already exists in multiple
passenger vehicles and is mandated to be attached to all such vehicles in the USA by 2018 (NHTSA 2014). This
paper presents a method for isolating the road lane in the parking camera’s field of view while taking into
consideration the metrics of defects that inspectors are using when they are looking for defects and during the
assessment.

2. STATE OF RESEARCH

Several studies have focused on the problem of road or lane detection due to the increasing demand of advanced
driver assistance systems. Systems that alert the driver to dangerous situations or assist with driving are
continuously developed and added in passenger vehicles. Various hardware setups have been proposed for
road/lane detection (Hillel et al. 2014).

Light Detection And Ranging (LIDAR) systems were utilized to identify objects obstructing the visibility of lane
markings and road boundaries (Hernandez and Marcotegui 2009; Huang et al. 2009), estimate the roughness of
the road (Huang et al. 2009; Kammel and Pitzer 2008) and detect road edges, curbs and berms etc. (Hernandez
and Marcotegui 2009; Nefian and Bradski 2006; Urmson et al. 2009). The high cost of LIDAR sensors limits the
practical use of these methods. Although several companies provide LIDAR sensors commercially, the cost
remains high.

Stereo imaging, a concept that uses two cameras in order to reconstruct the captured three-dimensional (3D)
scene, was proposed for solving the problem of road/lane detection. It was used for road pitch angle, 3D
geometry and slope estimation (Danescu and Nedevschi 2009), and curb detection (Pradeep et al. 2008).
Although stereo imaging is a much cheaper solution than LIDAR, it cannot reach the same level of accuracy and
reliability. Additionally, it poses a greater challenge for data processing (Hillel et al. 2014) because its range
accuracy depends on the distance between the cameras. The reliability of the results increases as the distance of
the cameras increases, and the same holds true for the computational cost.

Geographic Information Systems (GIS), Geographic Positional Systems (GPS) and Inertial Measurement Units
(IMU) are also gaining popularity for assisting driver navigation. GPS devices have an accuracy of 5-10m (Wing
et al. 2005) which can be reduced to 1m with the addition of an IMU (Urmson et al. 2009). The limitation of
such systems lies in their reliability due to their dependency on multiple satellite connections. Although in many
areas the information provided is accurate, GPS can lose signal in others. IMUs can compensate for such a loss,
but to a limited extent. Internal vehicle dynamic sensors that measure speed, yaw rate, and acceleration (e.g.
wheel speed and stirring angle sensors) were also used in conjunction with other sensors (Labayrade et al. 2006;
McCall and Trivedi 2006). However, their accuracy is limited (Huang et al. 2009).

Many methods in the literature propose the use of a single camera for road/lane detection. In most cases, the
camera is positioned in the middle of the vehicle looking forward. Image-based methods usually start with an
image pre-processing step and continue with feature extraction for detecting the object in question.
Pre-processing techniques aim to handle illuminations (Huang et al. 2009) and remove shadows (Cheng et al.
2006; Katramados et al. 2009). Feature extraction usually aims to detect lane markings, which have distinctive
shape and colour in comparison to the rest of the road. Simple gradients (Nieto et al. 2008; Samadzadegan et al.
2006) and steerable filters (McCall and Trivedi 2006) were used for this purpose.

Another approach in pre-processing image-based methods is to calculate the Region of Interest in the image.
Several definitions were used. It can be either the lower half of the image (Zhang et al. 2009) or the mapping of
3D world coordinates to the 2D image (Bertozzi and Broggi 1998; Huang et al. 2009; Tapia-Espinoza and
Torres-Torriti 2013; Zhang et al. 2009). In the case that the lower half of the image is defined as the region of
interest, the problem of identifying where the road lane is within that part of the frame still remains in some
cases. The reason it doesn’t hold for all cases is because it is dependent on the camera’s specifications and
positions. If the camera has a small horizontal field of view and is positioned closer to the ground, then the lower
half of the image might only contain the road lane, but if it is wide and is positioned further away from the road
level, then it will include the surrounding of the lane as well. Hence, defining the region of interest as the lower
half of the image is quite abstract.

The theory of Inverse Perspective Mapping (IPM) makes use of the camera’s position and orientation to perform
the mapping. Here follows an explanation of IPM, which is calculated using the pinhole model and the following
assumptions:
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1) The world coordinate system is fixed to the vehicle, {x",y",z"}

2) The camera is positioned at the back of the vehicle, at the middle of its width, at a height h with respect to
the ground and is tilted by an angle 68, towards the plane of the road.

Figure 1 depicts the IPM model. Equations 1 and 2 describe the relationship between a point p in the 2D image
plane and its 3D position P in the world. The image plane has size m x n pixels. The point p in the image plane
is represented with the image coordinate pair (u, v), where u is the horizontal axis of the camera and v us the
vertical axis. Point p can also be represented with the pair (r,c) if we consider the standard image row-column
representation of the image plane.

Figure 1. Inverse Perspective Mapping model of a point P in the world to a point p in the image.
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where r, ¢: image coordinates

m, n: image coordinates

h: height of the camera in respect to the ground

0, angle formed by the camera when tilted towards the road plane in respect to an axis
parallel to x" that goes through the focal point

a,,: camera’s vertical angle of view

a,: camera’s horizontal angle of view

)] tan(a,) cos(6,)

Existing methods have focused on automating the detection of the road lane. However, some are doing it quite
abstractly, or are just detecting the road lane, which in our case isn’t useful. We are interested into incorporating
the inspection guidelines and the defects’ metrics used for their assessment. Hence, the research question we set
is: what is the region of interest in a road video frame that is of use to an inspector? And our objective in this
paper is to propose such a method, which will isolate that part of the video frame that includes the road lane
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where defects can actually be detected.
3. PROPOSED SOLUTION

We assume that the parking camera is positioned on the rear of the vehicle looking backwards, at approximately
its middle and usually either close to the sign plate or the trunk handle. This is based on the position of typical
parking cameras which are placed either close to the sign plate of the vehicle or close to the trunk handle,
depending on the design of the car. The cameras used are often rotated downwards and have wide angles of view,
usually exceeding 90 degrees both horizontally and vertically.

Due to this setup, captured video frames depict not only the road lane, but its surroundings as well. These
include other vehicles, adjacent lanes, nature, sky, etc. Such features do not describe the condition of the road,
and are considered extraneous information. Therefore, a method is needed to isolate the road lane from the rest
of the video frame to allow further processing. However, even if the road lane is isolated from the rest of the
image, not all of it will be useful to an inspector. This is because based on the image analysis of the camera used,
the detail that is provided isn’t across all pixel rows. Hence, this needs to be taken into consideration. We call the
portion of each video frame that contains useful information myROI (my Region of Interest), and we calculate it
using the following:

1) Equations of IPM

2) Camera’s position (relative to the ground and centre of vehicle) and specifications (image analysis, lens’
angles of view-horizontally and vertically)

3) Road lane width
4) Inspection defect detection guidelines

Initially, using the camera’s position (height with respect to the ground) and specifications, we match the pixels
of a video frame with the real world space by using the equations of IPM. At this point, the image analysis of the
camera used is critical, because it defines the amount of detail that the image can capture. Knowing the world
coordinates that each pixel represents, then follows the calculation of the distance that each consecutive row in
the image is representing. This information allows to define the upper bound of myROI, along with the smaller
width of transverse crack that needs to be detected. Finally, the side boundaries of myROI are calculated based
on the width of the road lane that is being travelled.

Figure 2. Process of calculating myROI

3. IMPLEMENTATION & RESULTS

The code was implemented in MATLAB. The initial calculations were performed using the characteristics of the
camera that was selected according to parking camera standards, which is 0.4MP resolution - 808 x 508 pixels
(PG BFLY 05S2M). A lens that provides wide angles of view (Sunex DSL212) was attached to the camera to
acquire the desired perspective - 133° horizontal angle of view and 102° vertical angle of view. Figure 3 shows
the hardware used. The same standards were used for positioning the camera on the rear of the vehicle, 0.65m
above ground, and approximately 5cm left from the middle of the vehicle (see figure 3). For deciding on the
defects’ sizes, table 1 was created based on several inspection defect detection guidelines (FHWA 2003;
MnDOT 2003; MTC 1991; SDDOT 2009; UKPMS 2005). Table 1 summarizes the overall minimum and
maximum of defects’ attributes. Figure 4 and table 2 depict the results achieved using the aforementioned setup.
Table 2 includes details for myROI considering higher resolution cameras as well.
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Figure 3. Left - Hardware used for the calculation of myROI; Right - The position of the camera at the rear of a
vehicle

Table 1. Minimums and maxima of defects” attributed that inspectors” are looking for

Defect Attribute | Severity | Overall minimum | Overall maximum
Low 6mm
Width Medium 2mm 6 - 19mm
Longitudinal High 20mm
crack Low <0.9m
Length | Medium >0.9m Im
High
Low 3mm 6.35mm
Width Medium up to 6.35mm up to 20mm
Transverse High >6.35mm >20mm
cracks
Low >0.6m <1.82m
Length | Medium
High
<6mm width & no further than 150mm
Low apart
Alllga_tor : > 6mm & <= 19mm && no further than
Cracking Medium 150mm apart
High > 19mm
Low <25mm
Depth Medium 25-50mm
High >50mm
Low
Potholes Area Medium 15x15cm > 175cm2
High
Low palm size >150mm
Width Medium dinner plate
High larger
Local Level Low 3to 6 mm 3.175-50mm
Settlement . Medium 7t0 13 mm up to 101mm
q . difference
(depression) High >13 mm >101mm
Low 1-3 per 30.5m
Patching number | Medium 4-6 per 30.5m
High >6 per 30.5m
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4. DISCUSSION & CONCLUSIONS

Current practice for road condition monitoring is predominantly manual. It suffers from the limitations of being
time consuming and laborious. In addition, it is inevitable that the subjectivity of the inspector influences the
assessment results. Hence, state of research has turned its focus on automating the process and in particular, the
detection of road defects.

The project we have been working on lately focuses on proposing a method for automatically detecting road
defects using parking cameras. Due to our intention of utilizing such a sensor, which is accompanied with wide
angle of views lenses and it captures extraneous surrounding details in addition to the road lane, in this paper we
propose a method for isolating that part of the video frame that is useful for an inspector. We used the theory of
Inverse Projection Mapping along with camera calibration information to accomplish this task. This included the
camera’s position in respect to the road plane and the vehicle, its analysis, and its angles of views. The defect
attributes (sizes) that inspectors are looking for during a road assessment were also used.

The calculation of myROI was performed in MATLAB. The specifications of a typical parking camera,
including its recommended position, were used. It was concluded that the size of the defect defines the upper
bound of myROlI; i.e. the finer the defect, the smaller the area of interest. This justifies the lower upper boundary
of the red polygon in figure 4, within which the minimum width of a transverse crack that can be detected is
3.175mm; this corresponds to the smaller width that is encountered in the inspector’s guidelines. In the real
world, this translates to 30.8cm away from the back of the vehicle (see figure 4). If a wider transverse crack is to
be searched for, then the area of myROI increases and its upper bound is extended. So a transverse crack of
6.35mm width can be found within the green polygon of figure 4. The green bounded myROI corresponds to
62.82cm away from the vehicle.

The camera’s analysis is another factor that affects the boundaries of myROI. This is evident from the
calculations of myROI using higher camera resolution. As video analysis increases, so does the area of myROI.
However, that results in an increase of the cost for the hardware. The camera’s orientation is also affecting
myROI, along with the angle of views of the camera’s lens. It is critical that the camera is positioned at such a
height and tilted downwards in that angle, so that it doesn’t include the back of the car. The higher the camera is
positioned, the bigger the rotation downwards should be, so that myROI covers the area exactly opposite to the
car. That is where the analysis of the image is finer as well.

An important aspect for the calculation of myROI using the methodology presented in this paper is to know the
width of the road lane that the car is driving on. Hence, in our future work, we are interested in incorporating an
automated method for calculating the width of the road lane. Moreover, in figure 5 it is obvious that there is
some distortion, which is due to the wide-angle views of the parking camera. However, this does not affect the
defect detection results so it is not corrected in the input. For future work, correction of this type of distortion
will be part of the data pre-processing. In general, the advantage of the method proposed in this paper is that it is
incorporating the needs of road inspectors for whom it is critical to detect defects of specific sizes. It is very
helpful and saves from their time to provide them with the area that they should be looking into. The results
show that the method is promising

Figure 4. Left- Depiction of myROI on top of a video frame captured by a parking camera (trans holds for
transverse); a transverse crack with 3.175mm width can be found within the red shape, a transverse crack with
6mm width can be found within the green shape and one with 1cm can be found within the magenta shape,
Right- Depiction of extension of myROI at the back of a vehicle
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Figure 5. Upper left- Longitudinal crack (enclosed in yellow ellipse) of approximately 3mm shown in the middle

of myROI, Upper right) Patch (enclosed in yellow box) with dimensions: upper side - 120cm, lower side-135cm,

right side 135cm & left side 142cm, shown in myROI, Lower) Patch (enclosed in yellow ellipse) of 95¢cm width
on the left and a pothole (enclosed in yellow ellipse) with 10cm diameter on the right shown in myROI

Table 2. myROI results for different camera resolutions

myROI | myROI min min max max min max
Camera uy er uy er Long Long Lon Long Trans min Trans | Trans
. pp PP crack crack g crack crack width | crack
resolution bound bound . . crack crack .
(row) | (pixels) width | width lenath length width (pixels) length
P (mm) | (pixels) g (pixels) (m)
355 153 30.8cm 3.175mm
808 x 508 282 226 62.82cm 6mm
© 4)R/IP) 277 231 2.5 2 65.91cm 808 6.35mm 2 2.19
239 269 96.1cm 1cm
195 313 1.57cm ocm
461 307 50cm 3.175mm
1024 x 768 365 373 93.55cm 6.35mm
1.9 2 1024 2 2.19
(0.7MP) 318 450 1.31m icm
264 504 2.07m 2cm
533 427 62.6cm 3.175mm
426 534 1.1m 6.35mm
1280 x 960 15 2 1280 2 2.21
(IMP) 373 587 1.53m icm
312 648 2.39m 2cm
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