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Abstract:

This paper presents a novel technique for enhancing the polygonization of point cloud data by using geometric
similarity. Our method is an extension of our previous work, which uses local shape matching and aligns
polygons with similar shapes into a point cloud by using the Iterative Closest Point (ICP) algorithm. In this paper,
we propose to input the polygon data as template polygons and to add a fitting operation in the alignment step.
Our technigue makes it possible to use various polygons as input keys. It also enables the creation of a more
detailed product model from a coarse point cloud by filling up missing data points, regions, and defects. This
enhancement is especially effective on the point clouds of civil infrastructures, whose parts are similar in shape
but slightly different in size. This paper shows the results of our method applied to the point clouds of a harbor
facility and a monorail structure acquired from a mobile mapping system (MMS).
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1. INTRODUCTION

Maintenance of civil infrastructures is important for prolonging their service lives. Many civil infrastructures are
approaching their end of service, and efficient methods for their maintenance are required. In the case of new
civil infrastructures, construction information modeling (CIM) (Yabuki, 2012) consolidates all life-cycle
information of structures into 3D models. Ideally, the CIM framework could be utilized for efficient maintenance
of existing civil infrastructures. However, 3D models are required for CIM, and existing structures do not have
such models. Even if 2D drawings exist, it is difficult to translate them into 3D models, and the 3D models may
be different from the existing buildings due to building modifications over time. For these reasons, methods to
efficiently create 3D models of existing civil infrastructures are needed.

The use of laser scanning technology is one of the possible solutions to obtain 3D data of existing civil structures.
Laser scanners can acquire the surfaces of objects as a set of colored points. These point clouds, which provide
the “as-is” geometric information of objects, could be used for any CIM application that can be converted to
polygon data.

Creating polygons from point clouds is known as surface reconstruction and is one of the emerging topics in
geometric modeling (see survey by Burger et al., 2014). However, these methods usually create a single polygon
from a point cloud. Generally, product models consist of several parts and additional post processing such as
segmentation is required. Also, target civil infrastructures are usually large and difficult to polygonize at once.
The problem may be resolved by grid clustering. However, these clusters should be assembled at the end or an
unexpected artifact may appear on the boundary of the clusters. In addition, memory overflow may prevent
direct polygonization of large structures.

An alternative approach is to decompose a point cloud into meaningful regions. For example, Adan et al. (2013)
proposed a method for classifying point clouds of an indoor environment into a wall, floor, ceiling, or clutter
based on machine learning. To define a region, Matsuoka and Masuda (2014) proposed a method to remove road
points in the point cloud of a city according to height. The main advantage of these methods is the
decomposition of points into simple components with a lower number of points. This enables easier
polygonization. However, the components of a civil structure are usually unique and it is difficult to use similar
approaches due to the shortage of training data.
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Recently, Hidaka et al. (2015) proposed an efficient method to create a 3D model from a point cloud of civil
infrastructures by using geometric similarity. In this method, a point cloud is decomposed into similar regions by
local shape matching (Mori et al., 2006). For each similar part, only one representative point cloud is
polygonized, and the created polygons are used for representing other similar parts. This method is efficient for
creating polygons for civil infrastructures that have many identical or similar parts. Additionally, defects of the
polygons may be repaired by replacement of the representative parts. This is efficient for polygonization of point
clouds with missing regions. However, when the representative polygon lacks important features, the quality of
the output polygon becomes worse.

In this paper, we present a novel technique for enhancing the polygonization of point cloud data by using
geometric similarity. The proposed method is an extension of the previous method, which accepts various input
data as representative parts (such as CAD data). This enables users to control the quality of polygons by the
input sources. This paper also introduces some improvements that allow template shapes to be accepted. The
proposed method was implemented and its usability was verified by adopting different point clouds of
infrastructure facilities scanned by mobile mapping systems (MMS). This paper discusses the results, and
advantages and limitations of the proposed method.

2. METHOD
2.1 Overview

Our proposed method is based on our previous method (Hidaka et al., 2015). In the previous method, shown in
Figure 1(a), a point cloud of a civil infrastructure is segmented by the similarity of shapes, and each part is
polygonized. This method consists of three major steps. First, the input point cloud is decomposed into
meaningful parts that are clustered by local shape matching. Second, only one representative cluster of points is
selected and polygonized. Finally, the created polygons are arranged in the input point cloud based on the result
of matching by the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992).

Our proposed method, shown in Figure 1(b), follows the same steps as the previous method. The difference is
the use of polygon data acquired from other sources (e.g. CAD systems or photogrammetry systems (Agarwal et
al., 2011)) as representative polygons (i.e. template polygons). The use of different input sources creates the
following challenges. First, the different densities of points may affect the accuracy of the shape matching.
Second, the fitting of key polygons from different sources to similar parts is required. Third, the ICP results may
involve a small tilt due to the segmentation result. The proposed solutions to these issues are described in the
following subsections.

ﬂ&mjfhg Input key (polygon) ] l'
s JUO _\- gl
dnput olygozitation iput Input Polygozitation Output
Alignment Alignment Fittin
(a) The previous method (b) The proposed method

Figure 1. Overviews of the previous method (Hidaka et al., 2015) and the proposed method

2.2 Sampling of input polygon for shape matching

It is important to maintain similar density of point clouds for the efficient shape matching. The density of point
cloud created in other applications is different from a point cloud scanned by a laser scanner. In the case of CAD
polygons, their vertices are usually very few and their descriptors are different from the input point cloud, even
though their geometries are almost the same. Our method uses Poisson disk sampling (PDS) (Cook, 1986) to
obtain dense points from surfaces. PDS is a random sampling method that selects a point p; and removes a point
p; whose distance to p; is less than D, which is a user-defined density parameter. The method iterates until all
points are sampled or removed. Figure 2 shows a result of the method.
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(a) Polygon (b) Sampling result
Figure 2. Poisson disk sampling of a polygon

2.3 Projection of point clouds onto 2D space for shape matching

In the previous method, bounding spheres are used for defining local regions. Consequently, unnecessary points
are included in the region, as shown in Figure 3(a). Our method resolves this issue by considering the region as a
2D problem. The method first projects the point clouds of the keys and the input source onto the 2D plane and
computes the 2D descriptor (Mori et al., 2006) for the region inside the circle, as shown in Figure 3(b).

Extra points The number of extra points is
less than 3D

(a) Problem of clustérfn’g by spheres (b) Tighterhsegmentation by 2D projection
Figure 3. Defining regions by 2D projection

2.4 Key polygon fitting to point clouds

Because the key polygon is not exactly the same as similar regions in the point cloud, a fitting operation is
applied to obtain accurate polygonization results (Figure 4). The fitting operation is specialized for simple civil
structures. We assume the key shape can be approximated to the target point clouds by simple extruding
operations. Given the key polygon and similar point clouds, we first determine the extruding surface of the key
polygon by comparing the input data. Next, we find the extruding direction based on the difference of these data.
Figure 4 shows examples of the push method. Gaps are enclosed by dashed lines and the directions for the push
are indicated by arrows (Figure 4(a)). Figures 4(b) and 4(c) show the before and after examples of fitting,
respectively. The fitting result shown in Figure 4(c) shows better accuracy than does Figure 4(b).

(a) Algorithm . (b) Before fitting . (c) After fitting
Figure 4. Fitting operation

This approach has two main advantages. The first advantage is that users can approximate key polygons that do
not need to be very precise. In the previous method, it is presupposed that the shapes of parts are identical. Hence,
the quality of a polygon becomes worse when the parts’ shapes are dissimilar. Because all identical parts must be
prepared, the fitting operation improves the accuracy by repairing any dissimilarities. The second advantage is
the guaranteed quality of the parts. The segmentation method in the previous method sometimes includes
unnecessary points and this affects the quality of polygons, whereas man-made polygons are well formed or do
not contain noises. Such clean data are robust against incomplete MMS data, which often involve noises and
missing data.
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2.5 Constrained ICP for alignment

It is known that the ICP algorithm finds alignment in a least square sense and the result involves small tilt as
shown in Figure 5(a). We modified this step based on the characteristic of civil infrastructures that they are
generally built vertically. Our method uses 2D projection of the point clouds onto the horizontal plane introduced
in Date et al. (2014) and applies ICP to these projected points. This can reduce the degrees-of-freedom of the
transformation to as many as 4 (3 for translation and 1 for rotation). The transform matrix calculated by this
modified ICP is then applied to the 3D key polygon for arrangement. Figure 5(b) shows the alignment result by
constrained ICP; the part pose is clearly improved.

(a) Alignment by 3D ICP (b) Alignment by constrained ICP
Figure 5. Alignment by constrained ICP

3. RESULTS

The proposed method explained in the previous section is implemented by using the Point Cloud Library and is
then applied to two MMS data examples.

The first example is the harbor breakwater near the Naruo river in Nishinomiya City, Hyogo, Japan. The number
of points is 141,270. This structure has two types of ribs at regular intervals (Figure 6). Our experiment focuses
on creating polygons of these parts from a single template polygon created by other sources (e.g. CAD, structure
from motion (SfM)). Additionally, some unique objects including the wall, road, and signage board (Figure 7)
are polygonized by the Poisson surface reconstruction algorithm (Kazhdan et al., 2006) prior to matching.
Figures 8, 9, and 10 show the results of the experiments with different input sources. The correct result is
confirmed and the statistics are shown in Table 1.

@ (b)

Figure 6. Photo of Example 1 (Harbor breakwater)

Figure 7. Point cloud data of harbor breakwater (141,270 pts.)
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(a) Overall view

(b) Input key (c) Close-up view
Figure 8. Result of using polygons created by CAD

(a) Overall view

(b) Input key (c) Close-up view
Figure 9. Result of using polygons created by SfM

(a) Overall view

(b) Input key (c) Close-up view

Figure 10. Result of using polygons created by SfM (simplified)
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(a) Overall view

(c) Close-up view
Figure 11. Result of the previous method

(b) Created polygons

Table 1. Statistics of the harbor breakwater

Type of key data  #\fertices #Faces #Aligned parts Time[s]
(#Sampled points)
CAD model 6(1,420) 8 15 6.748
Proposed method SFM 85,106 169,066 15 18.743
SFM (simplified) 540 999 15 6.612
Previous method 5,120 7,495 5
3,286 5,132 10 59.718

The second dataset is a railway structure of the Osaka monorail in Suita City and Ibaraki City, Japan. This
structure consists of several types of piers. Although these piers are similar in shape, their heights are different to
adjust for the heights of the rails (Figure 12). The number of points is 694,843. The points of the road and the
rails were manually removed prior to the experiments, because the objective of this experiment was to
polygonize the pier structure. Figure 14 shows the results of the experiment. We confirmed that equivalent result
was computed from template polygons from different sources. Table 2 shows the statistics.

Figure 12. Photo of Example 2 (Monorail)
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Input polygons

Vertices:14 Vertices:16
Faces:24 Faces:28

Created polygon

Figure 15. Result of the previous method

Table 2. Statistics (Monorail)

Type of key data #Vertices #Faces  #Aligned parts Time[s]
(#Sampled points)
14(7,349) 24 44
Proposed method CAD model 16(7.323) 28 3 37110
Previous method 3,948 7,892 47 226.326

4. DISCUSSION

Figures 8, 9, 10, and 14 show that, although the representative parts were imported from difference sources such
as CAD models and polygons created by SfM, equivalent results to the previous method can be obtained. These
figures show that the framework can integrate various sources to obtain high-quality results. In particular, the
quality of part arrangement was improved by introducing constrained ICP based on the assumption that civil
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structure parts are generally built vertically (Section 2.5). The proposed technique of part segmentation on 2D
space (Section 2.3) also contributed to the improvement. The geometric fitting reduced the cost of creating key
parts that are similar but not identical. Finally, the computation time was also improved by using templates as the
key models, as shown in Table 2. This is due to the fact that the system does not need to find key shapes in the
input cloud.

Nevertheless, our proposed method has three major limitations. The first limitation is that all of the key shapes to
be used should be prepared in advance; otherwise, some unknown regions are polygonized by the previous
method. For example, the monorail dataset used in this experiment contains plants that were not polygonized by
the new method. The second limitation is that our method does not necessarily improve parts that can be created
by sweeping their cross sections, such as the monorail rail structure in the second experiment. In this case,
similar parts in the rail may be detected, but the realignment step may generate non-continuous output. The last
limitation is that our fitting method does not handle all shapes. As the fitting operation becomes easier when
shape correspondence is established, the conventional shape correspondence methods (e.g. Kim et al. 2011) can
be used to resolve this issue. However, these methods works well with shapes that have distinctive features (e.qg.
heads, legs and hands of animals). Hence, as parts of civil structures do not have distinctive features,
conventional methods failed to find correspondence in our experiment.

5. CONCLUSIONS

In this paper, our previous method to create polygons from a point cloud based on geometric similarity is
improved. In our proposed method, polygons created in other applications are used as search keys. Additional
enhancement methods are also discussed, such as a method to cover the gaps between polygons and point clouds
by fitting. We implemented our proposed method by applying it to the point clouds of civil infrastructures. The
results of case studies confirmed that meaningful parts could be decomposed and aligned, and the gaps between
polygons and point clouds could be covered by a fitting operation.

Several future studies are being considered. For example, by generalizing the fitting, the method can be applied
to more types of parts. In addition, adding the cross-section sweeping functionality can make the method more
versatile.
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