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Abstract:  

Billions of dollars are spent each year on the construction of bridges. While the financial impact of sub-optimal 

bridge designs is difficult to determine, given the hundreds of thousands of bridges in the United States alone, it 

is clearly significant. The bridge design process can be broken into three stages ¬¬– (1) preliminary design to 

choose the bridge prototype for detailed design, (2) detailed final design, and (3) design optimization. This paper 

focuses on the first stage of the design process – choosing the bridge structure prototype. In the preliminary 

design stage, an engineer first chooses a preliminary design predominantly via his/her experience in tandem with 

preliminary calculations. To simulate this experience-based design process, machine learning is used to predict 

multiple bridge prototypes via models developed from the National Bridge Inventory data of over 600,000 

bridges and seismic data from United States Geological Survey (USGS). The results of this machine learning 

study indicated several key design parameters that controlled most design choices, and demonstrated that such 

models are capable of sufficient accuracy for use in the design process. Significant variation in model 

performance was observed among individual states, likely due to differences in design preferences, material 

availability, and site-specific considerations. The next phase of this work will explore how to combine these 

machine learning models with advanced optimization methods in an effort to provide robust design support 

systems to engineers. 
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1. INTRODUCTION 

All bridges constructed in the US are designed as per the AASHTO design codes and are hence deemed safe for 

usage at the time of construction. However, while the AASHTO code ensures a safe design, it does not guarantee 

an optimal one. The optimality of a design often depends on a broad variety of parameters, such as the engineer’s 

skill and experience, which can be difficult to quantify. A suboptimal bridge is more costly to construct and 

potentially more expensive to maintain. This paper presents current efforts to develop a framework for design of 

bridge prototypes through a machine learning based methodology. 

 

 
 

Figure 1. Stages in the design of a structure 

 

The design of a bridge can be broken into multiple stages as illustrated in Figure 1. In the first stage, the design 

requirements, such as geometric constraints and usage requirements are specified. The engineer then devises a 

preliminary design based on these requirements, his/her experience and some structural calculations. The 

preliminary design or prototype is then used for a cost estimate, which is followed by final design detailing of all 

the components of the structure. The cost estimate and final design processes are heavily dependent on the 

prototyping phase, reflecting the importance of making the right choice for preliminary design.  

To improve the prototyping process, machine learning can be used to augment the experiential nature of design 

prototyping, and to provide potentially optimal structure system types on the basis of design parameters available 

to an engineer. After the prototype has been predicted, an algorithm designs the bridge as per the AASHTO 

design criteria, with the aid of an evolutionary algorithm to provide an optimal design. 

1.1 Literature Review 
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There have been a variety of machine learning implementations in civil engineering and in fields such as medical 

diagnosis. The use of machine learning for prototype prediction is similar in concept to the problem of medical 

diagnosis and structural health monitoring, in which the design requirements are analogous to symptoms or 

sensor or visual data from the bridge and the preliminary design type corresponds to the patient’s disease or 

health of the bridge. Similar to structural design, where different design requirements result in different designs, 

different medical symptoms indicate different diseases.  

There has been extensive research using and comparing different machine learning techniques for medical 

decision making and diagnosis (Harper, 2005; Kononenko, 2001; Lavrac, 1999; Potter, 2007). Past research in 

this domain indicates that the confidence of a physician in a machine learning based model for disease prediction 

is higher if he can explain the model’s decision making process i.e. the model is comprehensible (Bellazi & 

Zupan, 2008). This aspect is very relevant for civil engineers who are more likely to trust a machine learning 

model if it is comprehensible. In civil engineering, research in structural health monitoring uses machine 

learning primarily as a means of pattern recognition (Worden & Dulieu-Barton, 2004; Worden & Manson, 2007). 

Machine learning has also been used often for predicting bus arrival times and designing adaptive traffic signals 

(Abdulhai et al., 2003; Chien et al., 2002). Machine learning has also been used in structural engineering to 

calculate effective length factor and for structural optimization (Hajela & Lee, 1997; Hung & Jan, 1999). A 

survey of the use of machine learning in structural engineering from 1989 to 2000 can be found in (Adeli, 2001). 

1.2 Contributions of this work 

Given prior efforts to use machine learning for health monitoring or medical diagnosis, the purpose of this study 

was to investigate the use of machine learning in the prototyping phase of the engineering design process. The 

next section describes the developed methodology and gives an introduction to the machine learning techniques 

applied in this research. The third section explains the data analysis and experiments conducted with detailed 

results. The final section presents the conclusions and proposed future work for this research. 

 

2. METHODOLOGY 

Machine Learning (ML) encompasses algorithms that use data, usually in large amounts, to develop models that 

can predict or classify new instances of known similar data. In the context of this research, data on the design 

details of previously constructed bridges in the United States was used to construct the predictive models. 

2.1 Datasets Used for Analysis 

This study uses the NBI dataset (FHWA, 2015a) as the primary dataset and combines it with the USGS seismic 

dataset (USGS, 2015). The NBI dataset provides information regarding the bridge specifications that are 

available to a bridge designer prior to designing a bridge. The USGS data for seismic intensity provides 

additional information for deciding the bridge preliminary design. 

The NBI data contains over 110 attributes for each bridge of which a majority are not relevant for a bridge 

engineer when designing a bridge. A few attributes provided in the dataset are: bridge length, number of spans, 

navigational vertical clearance, maximum span length, deck structure type, sufficiency rating, material type, 

design type and average daily traffic. A full list of attributes of the NBI dataset can be found on the FHWA 

website (FHWA, 2015b). The USGS dataset provides the 2014 peak ground acceleration with a 2% probability 

of exceedance for the lower 48 states. Seismic data for Alaska, Hawaii and Puerto Rico was only available for 

2013 during the time of the research and hence was not considered. The dataset developed for this research is 

publicly available (LRG, 2015). 

2.2 Dataset Development 

The development of this dataset consisted of two stages of cleaning of the NBI dataset followed by integration of 

the USGS seismic intensity dataset. The first stage removed attributes which were irrelevant for a structural 

engineer or unknown to an engineer during design stage such as the bridge address, latitude, longitude, county 

code, sufficiency rating and route number. The next stage of data cleaning was done by two methods. In the first 

approach, preliminary machine learning models were first constructed. A single attribute was then removed from 

the dataset and a new model was constructed. This method will be referred to as “leave-one-attribute-out” 

strategy. If removal of an attribute did not affect Bayesian Network model accuracy by more than 1%, then it 

was considered as unimportant for prototype design prediction. The second method of data cleaning was the 

chi-squared feature evaluation algorithm (Datumbox, 2015), which evaluates the correlation between an attribute 

and the class to be predicted. Attributes with higher correlation score are better for use in classification. For 

evaluating attribute suitability, the second attribute which had a drop of 30% in chi-squared score (relative to the 

previous attribute) was found out. All attributes, including this one, with scores lesser than that of this attribute 

were not considered for developing machine learning models. After these two steps of data cleaning, we are left 

with only 4 attributes: maximum span length, average span length, deck structure type, material type and the 
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attribute to be predicted, design type. Then the seismic intensity corresponding to the bridge's latitude and 

longitude from the USGS dataset was added to the NBI data.  

2.3 Machine Learning Algorithms 

For design prototyping applications, an ideal machine learning algorithm should not only have a high accuracy, 

but also should be comprehensible by structural engineers (Bellazi & Zupan, 2008). The comprehensibility is 

more important from a structural design standpoint since the model might make erroneous assumptions, leading 

to design errors, that can only be corrected if the decision making process can be followed, understood and 

checked by an engineer. Keeping this in mind, two algorithms were used for the study: Decision Tree and 

Bayesian Network Classifier because they both result in models which can be understood by an engineer.  

(1) Decision Tree 

A decision tree model visualizes all the data as classifiable using a sequence of conditional statements. The 

representation of this model is in the form of a tree. Figure 2 shows a simplified example decision tree for bridge 

prototyping. The figure implies that if material is steel, and maximum span length is greater than 150ft, then the 

bridge is of type Stringer or Multi-beam. If the span length is less than 150ft, then a different design type is used. 

The details of how the decision tree is constructed cannot be explained in this manuscript and the authors refer 

the reader to the relevant explanations from the literature (Mitchell, 1997; Quinlan, 1986; Witten et al., 2011). 

 

 
 

Figure 2. Example decision tree for bridge design prototyping 

 

 
 

Figure 3. Example Bayesian Network for Bridge Prototyping 

 

(2) Bayesian Network Classifier 

This classifier learns a Bayesian network from the instances that are provided in the dataset. The probability of 

each class is determined from the network and associated probabilities learned from the instances provided to 

develop the network. A sample Bayesian network for predicting the design type using only the final four 

attributes from NBI dataset is shown in Figure 3. Details on the Bayesian Network classifier are beyond the 

scope of this work and the authors refer the reader to previous explanations in the literature (Mitchell, 1997; 
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Cheng & Greiner, 2001).  

(3) Other Classifiers considered 

There are many popular classifiers that can be used for developing machine learning models. Some of the most 

popular ones, like Artificial Neural Networks and Support Vector Machines, give excellent performance in terms 

of accuracy but the decision making process of the models developed are not readily comprehensible by an 

engineer. For this reason, other classifiers were not developed in this work. 

 

3. EXPERIMENTS AND RESULTS 

All experiments for the machine learning based data analysis were performed in Weka a java based data analysis 

tool developed at the University of Waikato (Weka, 2015). The experiments can be divided into four stages. The 

first stage of experiments, Feature Selection and Extraction, chose the best-suited features and tested the 

potential of new features developed by combining existing ones. 

The second stage of experiments, National Model Analysis, developed models using data from all the states 

except for one. The model was then tested on the data of the state that was not used for training. These 

experiments tested if it was possible to develop a single unified model using J48 Decision Tree and Bayesian 

Network algorithms, along with 10-fold cross validation for predicting design type of all bridges of the US. The 

J48 algorithm implementation in Weka was run with a confidence factor of 0.25, minimum 2 objects per leaf and 

3 folds. The Bayesian Network algorithm implemented in Weka used the K2 algorithm for searching network 

structures and the Simple Estimator for developing the conditional probability tables. 

The third stage, Individual State Model Analysis, developed machine learning models for each state using only 

the data for that state. This analysis developed more fine grain models that captured the variations in bridge 

design choices from factors like climatic conditions, seismic effects and design code requirements. J48 Decision 

Tree and Bayesian Network were used with 10-fold cross validation for developing and validating models. To 

account for seismic hazard, seismic data from USGS was added to the dataset as an additional attribute and its 

impact on the accuracy of the models was examined. 

3.1 Feature Selection and Feature Extraction 

After the first step of initial feature selection by removing irrelevant attributes from the dataset, 17 attributes 

were left. Before the next stage of attribute reduction was performed, one additional attribute was extracted from 

the existing attributes: average span length. After this additional attribute was added, chi squared attribute 

selection was performed. Table 1 shows the 6 best attributes as per chi squared attribute selection scores for four 

representative states. In Table 1, the relative drops in chi-squared scores of the next attribute relative to the 

current one are shown by the symbol Δ. It was noticed that there was almost always a huge decrease in 

chi-squared evaluation score after the first attribute. For evaluating attribute suitability, the second attribute 

which had a value of Δ greater than 30% in chi-squared score was found out. All attributes with scores lesser 

than that of this attribute were not considered for developing machine learning models. Among the attributes, it 

was noted that there was a strong correlation between total length and maximum span length and total length and 

average span length.  Next, the second round of feature selection was carried out by both the approaches 

outlined in Section 2.2. The first approach, the leave-one-attribute-out analysis, reduces the number of features 

from 17 to 4. Removal of any one of these remaining four attributes results in significant drop of over 1.5% for 

the Bayesian Network model. These four attributes were maximum span length, average span length, deck 

structure type and material type. Only Bayesian Network model is considered since it is less sensitive to noise 

and change in parameters than Decision Tree and hence is more robust. Since, the four attributes from 

chi-squared feature evaluation and the leave-out-attribute-out analysis matched very closely, only these were 

considered for developing the models. Note that for Kansas, Deck Structure Type was considered in the final 

attributes for machine learning since its removal affected the model accuracy significantly. 

 

Table 1. List of Best 6 Attributes Based on Chi-Squared Feature Evaluation for Georgia, California and Texas 

Kansas Georgia California Texas 

Average Span Length 

(Δ = 49.19%) 

Average Span Length 

(Δ = 68.12%) 

Max. Span Length 

(Δ = 36.26%) 

Average Span Length 

(Δ = 81.56%) 

Material Type 

(Δ = 15.51%) 

Material Type 

(Δ = 1.46%) 

Avg. Span Length 

(Δ = 13.36%) 

Maximum Span Length 

(Δ = 25.13%) 

Maximum Span Length 

(Δ = 38.57%) 

Deck Structure Type 

(Δ = 2.47%) 

Deck Structure Type 

(Δ = 0.56%) 

Material Type 

(Δ = 24.28%) 

Total Length  

(Δ = 33.97%) 

Max. Span Length  

(Δ = 52.72%) 

Material Type 

(Δ = 35.8%) 

Total Length  

(Δ = 29.75%) 
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Deck Structure Type Total Length 
Navigational Vertical 

Clearance 
Deck Structure Type 

Number of Spans 
Navigational Vertical 

Clearance 
Total Length Number of Spans 

 

3.2 National Model Analysis 

The accuracy of the national models (Table 2) on an average was not very high and hence could not be 

considered useful as a recommendation tool for engineers. The accuracies marked in bold and underlined are the 

best and worst accuracies using the respective machine learning algorithm. While the Bayesian Network models 

show a fair amount of robustness in the results with results being somewhat consistent, the Decision Tree models 

show a significant variance in the accuracy of models. In fact, the best accuracy using the Decision Tree 

algorithm is, surprisingly, for the state of California, a state which later consistently shows poor performance 

with both Decision Tree and Bayesian Network methods and different, but more relevant, training sets. The 

reason for this discrepancy in model performance could not be determined, but appears to be a statistical 

anomaly caused by the configuration of the developed Decision Tree. The high variance in model accuracy using 

the Decision Tree illustrates the noise sensitivity of this algorithm. Bayesian Networks, being less sensitive to 

noise show slightly more robust results. There are several possible reasons for the low accuracy of the models. 

There are significant variations in the design code from state to state, introducing inherent differences in design 

choices. Hence, when the machine learning algorithm is developed, instances with similar values of attributes 

but different design types result in a model with lower accuracy. This led to the next stage of experiments, where 

a separate model for each state was developed in order to reduce conflicting design choices resulting from 

differences in state codes.  

 

Table 2. Accuracy of national models 

Attributes used  
Material type, Maximum span length, Average span length, Deck 

structure type 

State 
Decision 

Tree 

Bayesian 

Network 
State 

Decision 

Tree 

Bayesian 

Network 

CA 88.4 44.7 FL 75.8 78 

GA 88 80.9 IL 72.4 81.9 

MN 86.5 85.1 ME 76.5 74.8 

MS 78.4 84 NV 70.3 75.1 

OR 39.7 75.5 PA 54 75.7 

WA 50.1 46 VA 80 74.9 

 

Table 3. Accuracy of individual state models 

Attributes used  
Material type, Maximum span length, Average span length, Deck 

structure type 

State 
Decision 

Tree 

Bayesian 

Network 
State 

Decision 

Tree 

Bayesian 

Network 

CA 79.5 74.8 FL 70 87.1 

GA 95.4 96.3 IL 91 92.2 

MN 95.5 93.1 ME 84.6 81.7 

MS 95.2 93.1 NV 79 75.8 

OR 77.8 67 PA 70.1 69.9 

WA 67.8 60.2 VA 85 88.2 

 

3.3 Individual State Model Analysis 

Individual state models were first developed using only the NBI data. Seismic data was later integrated to 

account for seismic conditions. Decision Trees (J48) and Bayesian Network were used to develop all models. 

The parameters used for Decision Trees and Bayesian Network were the same as mentioned previously in 

Section 3. 

(1) Models using the NBI dataset only 

Table 3 tabulates the classification accuracy of the J48 and BN models for a few representative states, and 

illustrates the variations in machine learning accuracy for each state. The best accuracy is for the state of Georgia 

with BN algorithm while DT gives best accuracy for Minnesota. Decreased accuracy can be seen for the 

seismically active states of Washington, Oregon and California. While seismic activity does decrease accuracy, it 
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is not the only cause of loss of accuracy as can be seen from the low accuracy for Pennsylvania, Idaho and New 

Jersey (not shown in table). The values highlighted in bold and underline in the table are the maximum and 

minimum accuracies of the model.  

(2) Individual state models with seismic data 

Results from the experiments performed with the seismic data as an attribute are tabulated in Table 4. The results 

show an average improvement in model accuracy of 1.2% compared to the analysis of only NBI data. Although 

most states show a minor increment in model accuracy, some states like Idaho show a small decrease in model 

accuracy (0.3%). In a few states, the increment is significant. The state of Florida shows an improvement of 

10.45% in model accuracy whereas for South Carolina, model accuracy improves by 5.05%. In the table, the 

values highlighted in bold and underline are the maximum and minimum accuracies of the model. 

 

Table 4: Accuracy of individual state models including USGS seismic data 

Attributes used 
Maximum span length, Average span length, Deck structure type, 

Material Type, Seismic activity 

State 
Decision 

Tree 

Bayesian 

Network 
State 

Decision 

Tree 

Bayesian 

Network 

CA 79.9 75.3 FL 89.7 88.3 

GA 96.6 96.4 IL 91.1 92.3 

MN 95.4 93.3 ME 84.6 81.7 

MS 95.7 94 NV 80 77.1 

OR 79.3 70.3 PA 74.9 72.1 

VA 88.4 88.3 WA 70.2 64.4 

 

4. CONCLUSION AND FUTURE WORK 

The average accuracy of the individual state machine learning models with seismic data was 82.9%, and 

indicated a significant increase in performance compared to the national models (71.7%). Upon the inclusion of 

USGS seismic data as an attribute, the predictive accuracy of the models improved slightly more and an average 

accuracy of 84.6% was obtained. The best model prediction accuracy was 96.6% for the state of Georgia using 

the Decision Tree algorithm and the worst prediction accuracy was 64.4% for the state of Washington using 

Bayesian Networks. 

There are several causes for error in the model development and evaluation stage. The dataset itself can have 

missing entries in addition to possibly wrong entries. A bridge with a Stringer/Multibeam design could have 

been mistakenly classified as some other type. The models developed from data containing this type of errors 

would be imperfect and can misclassify other bridges. In addition to this, it should be noted that the Decision 

Tree algorithm is noise sensitive and minor variations in the input data, possibly due to errors in the dataset, can 

result in variations in its prediction. This was evidenced in the Florida state data without seismic data. The model 

accuracy, shown in Table 3, is 70% whereas the same state has an accuracy of 89.7% after adding seismic data. 

Additionally, the accuracy of the corresponding Bayesian Network models is 87.1% and 88.3%, which shows 

that Florida is expected to have model accuracy close to 87% with no seismic data. No other state has such a 

drastic improvement in accuracy, which leads to authors to conclude that the poor result was a statistical 

anomaly. A key limitation of this study is that machine learning algorithms perform better when they have more 

instances to learn from. Hence, for bridges with relatively less common design types, such as suspension bridges 

and bascule bridges, there are higher chances that the machine learning model is not able to learn how to predict 

these bridge prototypes effectively.  

The next stage of work aims to use the design prototype, which is the output from the machine learning 

algorithm, as input for the next stage: the optimization phase. The optimization space of a structure is 

non-convex with numerous local minima. To perform a search of a more global nature, the authors intend to 

implement methods that sample the search space at multiple points, such as evolutionary algorithms and particle 

swarm methods. Using the structure prototype from the machine learning algorithm, multiple bridge designs 

would be developed. These designs would then be used to seed the optimization algorithm and come up with an 

optimized structural design. 
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