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Abstract:

Billions of dollars are spent each year on the construction of bridges. While the financial impact of sub-optimal
bridge designs is difficult to determine, given the hundreds of thousands of bridges in the United States alone, it
is clearly significant. The bridge design process can be broken into three stages -—— (1) preliminary design to
choose the bridge prototype for detailed design, (2) detailed final design, and (3) design optimization. This paper
focuses on the first stage of the design process — choosing the bridge structure prototype. In the preliminary
design stage, an engineer first chooses a preliminary design predominantly via his/her experience in tandem with
preliminary calculations. To simulate this experience-based design process, machine learning is used to predict
multiple bridge prototypes via models developed from the National Bridge Inventory data of over 600,000
bridges and seismic data from United States Geological Survey (USGS). The results of this machine learning
study indicated several key design parameters that controlled most design choices, and demonstrated that such
models are capable of sufficient accuracy for use in the design process. Significant variation in model
performance was observed among individual states, likely due to differences in design preferences, material
availability, and site-specific considerations. The next phase of this work will explore how to combine these
machine learning models with advanced optimization methods in an effort to provide robust design support
systems to engineers.
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1. INTRODUCTION

All bridges constructed in the US are designed as per the AASHTO design codes and are hence deemed safe for
usage at the time of construction. However, while the AASHTO code ensures a safe design, it does not guarantee
an optimal one. The optimality of a design often depends on a broad variety of parameters, such as the engineer’s
skill and experience, which can be difficult to quantify. A suboptimal bridge is more costly to construct and
potentially more expensive to maintain. This paper presents current efforts to develop a framework for design of
bridge prototypes through a machine learning based methodology.
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Figure 1. Stages in the design of a structure

The design of a bridge can be broken into multiple stages as illustrated in Figure 1. In the first stage, the design
requirements, such as geometric constraints and usage requirements are specified. The engineer then devises a
preliminary design based on these requirements, his/her experience and some structural calculations. The
preliminary design or prototype is then used for a cost estimate, which is followed by final design detailing of all
the components of the structure. The cost estimate and final design processes are heavily dependent on the
prototyping phase, reflecting the importance of making the right choice for preliminary design.

To improve the prototyping process, machine learning can be used to augment the experiential nature of design
prototyping, and to provide potentially optimal structure system types on the basis of design parameters available
to an engineer. After the prototype has been predicted, an algorithm designs the bridge as per the AASHTO
design criteria, with the aid of an evolutionary algorithm to provide an optimal design.

1.1 Literature Review
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There have been a variety of machine learning implementations in civil engineering and in fields such as medical
diagnosis. The use of machine learning for prototype prediction is similar in concept to the problem of medical
diagnosis and structural health monitoring, in which the design requirements are analogous to symptoms or
sensor or visual data from the bridge and the preliminary design type corresponds to the patient’s disease or
health of the bridge. Similar to structural design, where different design requirements result in different designs,
different medical symptoms indicate different diseases.

There has been extensive research using and comparing different machine learning techniques for medical
decision making and diagnosis (Harper, 2005; Kononenko, 2001; Lavrac, 1999; Potter, 2007). Past research in
this domain indicates that the confidence of a physician in a machine learning based model for disease prediction
is higher if he can explain the model’s decision making process i.e. the model is comprehensible (Bellazi &
Zupan, 2008). This aspect is very relevant for civil engineers who are more likely to trust a machine learning
model if it is comprehensible. In civil engineering, research in structural health monitoring uses machine
learning primarily as a means of pattern recognition (Worden & Dulieu-Barton, 2004; Worden & Manson, 2007).
Machine learning has also been used often for predicting bus arrival times and designing adaptive traffic signals
(Abdulhai et al., 2003; Chien et al., 2002). Machine learning has also been used in structural engineering to
calculate effective length factor and for structural optimization (Hajela & Lee, 1997; Hung & Jan, 1999). A
survey of the use of machine learning in structural engineering from 1989 to 2000 can be found in (Adeli, 2001).

1.2 Contributions of this work

Given prior efforts to use machine learning for health monitoring or medical diagnosis, the purpose of this study
was to investigate the use of machine learning in the prototyping phase of the engineering design process. The
next section describes the developed methodology and gives an introduction to the machine learning techniques
applied in this research. The third section explains the data analysis and experiments conducted with detailed
results. The final section presents the conclusions and proposed future work for this research.

2. METHODOLOGY

Machine Learning (ML) encompasses algorithms that use data, usually in large amounts, to develop models that
can predict or classify new instances of known similar data. In the context of this research, data on the design
details of previously constructed bridges in the United States was used to construct the predictive models.

2.1 Datasets Used for Analysis

This study uses the NBI dataset (FHWA, 2015a) as the primary dataset and combines it with the USGS seismic
dataset (USGS, 2015). The NBI dataset provides information regarding the bridge specifications that are
available to a bridge designer prior to designing a bridge. The USGS data for seismic intensity provides
additional information for deciding the bridge preliminary design.

The NBI data contains over 110 attributes for each bridge of which a majority are not relevant for a bridge
engineer when designing a bridge. A few attributes provided in the dataset are: bridge length, number of spans,
navigational vertical clearance, maximum span length, deck structure type, sufficiency rating, material type,
design type and average daily traffic. A full list of attributes of the NBI dataset can be found on the FHWA
website (FHWA, 2015b). The USGS dataset provides the 2014 peak ground acceleration with a 2% probability
of exceedance for the lower 48 states. Seismic data for Alaska, Hawaii and Puerto Rico was only available for
2013 during the time of the research and hence was not considered. The dataset developed for this research is
publicly available (LRG, 2015).

2.2 Dataset Development

The development of this dataset consisted of two stages of cleaning of the NBI dataset followed by integration of
the USGS seismic intensity dataset. The first stage removed attributes which were irrelevant for a structural
engineer or unknown to an engineer during design stage such as the bridge address, latitude, longitude, county
code, sufficiency rating and route number. The next stage of data cleaning was done by two methods. In the first
approach, preliminary machine learning models were first constructed. A single attribute was then removed from
the dataset and a new model was constructed. This method will be referred to as “leave-one-attribute-out”
strategy. If removal of an attribute did not affect Bayesian Network model accuracy by more than 1%, then it
was considered as unimportant for prototype design prediction. The second method of data cleaning was the
chi-squared feature evaluation algorithm (Datumbox, 2015), which evaluates the correlation between an attribute
and the class to be predicted. Attributes with higher correlation score are better for use in classification. For
evaluating attribute suitability, the second attribute which had a drop of 30% in chi-squared score (relative to the
previous attribute) was found out. All attributes, including this one, with scores lesser than that of this attribute
were not considered for developing machine learning models. After these two steps of data cleaning, we are left
with only 4 attributes: maximum span length, average span length, deck structure type, material type and the
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attribute to be predicted, design type. Then the seismic intensity corresponding to the bridge's latitude and
longitude from the USGS dataset was added to the NBI data.

2.3 Machine Learning Algorithms

For design prototyping applications, an ideal machine learning algorithm should not only have a high accuracy,
but also should be comprehensible by structural engineers (Bellazi & Zupan, 2008). The comprehensibility is
more important from a structural design standpoint since the model might make erroneous assumptions, leading
to design errors, that can only be corrected if the decision making process can be followed, understood and
checked by an engineer. Keeping this in mind, two algorithms were used for the study: Decision Tree and
Bayesian Network Classifier because they both result in models which can be understood by an engineer.

(1) Decision Tree

A decision tree model visualizes all the data as classifiable using a sequence of conditional statements. The
representation of this model is in the form of a tree. Figure 2 shows a simplified example decision tree for bridge
prototyping. The figure implies that if material is steel, and maximum span length is greater than 150ft, then the
bridge is of type Stringer or Multi-beam. If the span length is less than 150ft, then a different design type is used.
The details of how the decision tree is constructed cannot be explained in this manuscript and the authors refer
the reader to the relevant explanations from the literature (Mitchell, 1997; Quinlan, 1986; Witten et al., 2011).

Material Type

Material = Concrete Material = Steel

Avg Span Length Max Span Length

Span Length < 150ft Span Length > 150ft

Some other Stringer or
design type Multi-beam

Figure 2. Example decision tree for bridge design prototyping

Deck Structure
Type

v

Design Type

Material Type

Maximum
Span Length

L

Average Span
Length

Figure 3. Example Bayesian Network for Bridge Prototyping

(2) Bayesian Network Classifier

This classifier learns a Bayesian network from the instances that are provided in the dataset. The probability of
each class is determined from the network and associated probabilities learned from the instances provided to
develop the network. A sample Bayesian network for predicting the design type using only the final four
attributes from NBI dataset is shown in Figure 3. Details on the Bayesian Network classifier are beyond the
scope of this work and the authors refer the reader to previous explanations in the literature (Mitchell, 1997;
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Cheng & Greiner, 2001).
(3) Other Classifiers considered

There are many popular classifiers that can be used for developing machine learning models. Some of the most
popular ones, like Artificial Neural Networks and Support Vector Machines, give excellent performance in terms
of accuracy but the decision making process of the models developed are not readily comprehensible by an
engineer. For this reason, other classifiers were not developed in this work.

3. EXPERIMENTS AND RESULTS

All experiments for the machine learning based data analysis were performed in Weka a java based data analysis
tool developed at the University of Waikato (Weka, 2015). The experiments can be divided into four stages. The
first stage of experiments, Feature Selection and Extraction, chose the best-suited features and tested the
potential of new features developed by combining existing ones.

The second stage of experiments, National Model Analysis, developed models using data from all the states
except for one. The model was then tested on the data of the state that was not used for training. These
experiments tested if it was possible to develop a single unified model using J48 Decision Tree and Bayesian
Network algorithms, along with 10-fold cross validation for predicting design type of all bridges of the US. The
J48 algorithm implementation in Weka was run with a confidence factor of 0.25, minimum 2 objects per leaf and
3 folds. The Bayesian Network algorithm implemented in Weka used the K2 algorithm for searching network
structures and the Simple Estimator for developing the conditional probability tables.

The third stage, Individual State Model Analysis, developed machine learning models for each state using only
the data for that state. This analysis developed more fine grain models that captured the variations in bridge
design choices from factors like climatic conditions, seismic effects and design code requirements. J48 Decision
Tree and Bayesian Network were used with 10-fold cross validation for developing and validating models. To
account for seismic hazard, seismic data from USGS was added to the dataset as an additional attribute and its
impact on the accuracy of the models was examined.

3.1 Feature Selection and Feature Extraction

After the first step of initial feature selection by removing irrelevant attributes from the dataset, 17 attributes
were left. Before the next stage of attribute reduction was performed, one additional attribute was extracted from
the existing attributes: average span length. After this additional attribute was added, chi squared attribute
selection was performed. Table 1 shows the 6 best attributes as per chi squared attribute selection scores for four
representative states. In Table 1, the relative drops in chi-squared scores of the next attribute relative to the
current one are shown by the symbol A. It was noticed that there was almost always a huge decrease in
chi-squared evaluation score after the first attribute. For evaluating attribute suitability, the second attribute
which had a value of A greater than 30% in chi-squared score was found out. All attributes with scores lesser
than that of this attribute were not considered for developing machine learning models. Among the attributes, it
was noted that there was a strong correlation between total length and maximum span length and total length and
average span length. Next, the second round of feature selection was carried out by both the approaches
outlined in Section 2.2. The first approach, the leave-one-attribute-out analysis, reduces the number of features
from 17 to 4. Removal of any one of these remaining four attributes results in significant drop of over 1.5% for
the Bayesian Network model. These four attributes were maximum span length, average span length, deck
structure type and material type. Only Bayesian Network model is considered since it is less sensitive to noise
and change in parameters than Decision Tree and hence is more robust. Since, the four attributes from
chi-squared feature evaluation and the leave-out-attribute-out analysis matched very closely, only these were
considered for developing the models. Note that for Kansas, Deck Structure Type was considered in the final
attributes for machine learning since its removal affected the model accuracy significantly.

Table 1. List of Best 6 Attributes Based on Chi-Squared Feature Evaluation for Georgia, California and Texas

Kansas Georgia California Texas
Average Span Length Average Span Length Max. Span Length Average Span Length
(A =49.19%) (A =68.12%) (A =36.26%) (A =81.56%)

Material Type Material Type Avg. Span Length Maximum Span Length

(A =15.51%) (A =1.46%) (A =13.36%) (A =25.13%)
Maximum Span Length Deck Structure Type Deck Structure Type Material Type

(A =38.57%) (A =2.47%) (A =0.56%) (A =24.28%)

Total Length Max. Span Length Material Type Total Length

(A=33.97%) (A =52.72%) (A=35.8%) (A =29.75%)
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Navigational Vertical

Deck Structure Type Total Length Clearance

Deck Structure Type

Navigational Vertical

Number of Spans Clearance

Total Length Number of Spans

3.2 National Model Analysis

The accuracy of the national models (Table 2) on an average was not very high and hence could not be
considered useful as a recommendation tool for engineers. The accuracies marked in bold and underlined are the
best and worst accuracies using the respective machine learning algorithm. While the Bayesian Network models
show a fair amount of robustness in the results with results being somewhat consistent, the Decision Tree models
show a significant variance in the accuracy of models. In fact, the best accuracy using the Decision Tree
algorithm is, surprisingly, for the state of California, a state which later consistently shows poor performance
with both Decision Tree and Bayesian Network methods and different, but more relevant, training sets. The
reason for this discrepancy in model performance could not be determined, but appears to be a statistical
anomaly caused by the configuration of the developed Decision Tree. The high variance in model accuracy using
the Decision Tree illustrates the noise sensitivity of this algorithm. Bayesian Networks, being less sensitive to
noise show slightly more robust results. There are several possible reasons for the low accuracy of the models.
There are significant variations in the design code from state to state, introducing inherent differences in design
choices. Hence, when the machine learning algorithm is developed, instances with similar values of attributes
but different design types result in a model with lower accuracy. This led to the next stage of experiments, where
a separate model for each state was developed in order to reduce conflicting design choices resulting from
differences in state codes.

Table 2. Accuracy of national models
Material type, Maximum span length, Average span length, Deck
structure type

Attributes used

Decision Bayesian Decision Bayesian
State Tree Network State Tree Network
CA 88.4 44.7 FL 75.8 78
GA 88 80.9 IL 72.4 81.9
MN 86.5 85.1 ME 76.5 74.8
MS 78.4 84 NV 70.3 75.1
OR 39.7 75.5 PA 54 75.7
WA 50.1 46 VA 80 74.9

Table 3. Accuracy of individual state models
Material type, Maximum span length, Average span length, Deck
structure type

Attributes used

Decision Bayesian Decision Bayesian
State Tree Ne¥work State Tree Ne¥wo rk
CA 79.5 74.8 FL 70 87.1
GA 95.4 96.3 IL 91 92.2
MN 95.5 93.1 ME 84.6 81.7
MS 95.2 93.1 NV 79 75.8
OR 77.8 67 PA 70.1 69.9
WA 67.8 60.2 VA 85 88.2

3.3 Individual State Model Analysis

Individual state models were first developed using only the NBI data. Seismic data was later integrated to
account for seismic conditions. Decision Trees (J48) and Bayesian Network were used to develop all models.
The parameters used for Decision Trees and Bayesian Network were the same as mentioned previously in
Section 3.

(1) Models using the NBI dataset only

Table 3 tabulates the classification accuracy of the J48 and BN models for a few representative states, and
illustrates the variations in machine learning accuracy for each state. The best accuracy is for the state of Georgia
with BN algorithm while DT gives best accuracy for Minnesota. Decreased accuracy can be seen for the
seismically active states of Washington, Oregon and California. While seismic activity does decrease accuracy, it
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is not the only cause of loss of accuracy as can be seen from the low accuracy for Pennsylvania, ldaho and New
Jersey (not shown in table). The values highlighted in bold and underline in the table are the maximum and
minimum accuracies of the model.

(2) Individual state models with seismic data

Results from the experiments performed with the seismic data as an attribute are tabulated in Table 4. The results
show an average improvement in model accuracy of 1.2% compared to the analysis of only NBI data. Although
most states show a minor increment in model accuracy, some states like Idaho show a small decrease in model
accuracy (0.3%). In a few states, the increment is significant. The state of Florida shows an improvement of
10.45% in model accuracy whereas for South Carolina, model accuracy improves by 5.05%. In the table, the
values highlighted in bold and underline are the maximum and minimum accuracies of the model.

Table 4: Accuracy of individual state models including USGS seismic data
. Maximum span length, Average span length, Deck structure type,
Attributes used Material Type, Seismic activity

Decision Bayesian Decision Bayesian
State Tree Network State Tree Network
CA 79.9 75.3 FL 89.7 88.3
GA 96.6 96.4 IL 91.1 92.3
MN 95.4 93.3 ME 84.6 81.7
MS 95.7 94 NV 80 77.1
OR 79.3 70.3 PA 74.9 72.1
VA 88.4 88.3 WA 70.2 64.4

4. CONCLUSION AND FUTURE WORK

The average accuracy of the individual state machine learning models with seismic data was 82.9%, and
indicated a significant increase in performance compared to the national models (71.7%). Upon the inclusion of
USGS seismic data as an attribute, the predictive accuracy of the models improved slightly more and an average
accuracy of 84.6% was obtained. The best model prediction accuracy was 96.6% for the state of Georgia using
the Decision Tree algorithm and the worst prediction accuracy was 64.4% for the state of Washington using
Bayesian Networks.

There are several causes for error in the model development and evaluation stage. The dataset itself can have
missing entries in addition to possibly wrong entries. A bridge with a Stringer/Multibeam design could have
been mistakenly classified as some other type. The models developed from data containing this type of errors
would be imperfect and can misclassify other bridges. In addition to this, it should be noted that the Decision
Tree algorithm is noise sensitive and minor variations in the input data, possibly due to errors in the dataset, can
result in variations in its prediction. This was evidenced in the Florida state data without seismic data. The model
accuracy, shown in Table 3, is 70% whereas the same state has an accuracy of 89.7% after adding seismic data.
Additionally, the accuracy of the corresponding Bayesian Network models is 87.1% and 88.3%), which shows
that Florida is expected to have model accuracy close to 87% with no seismic data. No other state has such a
drastic improvement in accuracy, which leads to authors to conclude that the poor result was a statistical
anomaly. A key limitation of this study is that machine learning algorithms perform better when they have more
instances to learn from. Hence, for bridges with relatively less common design types, such as suspension bridges
and bascule bridges, there are higher chances that the machine learning model is not able to learn how to predict
these bridge prototypes effectively.

The next stage of work aims to use the design prototype, which is the output from the machine learning
algorithm, as input for the next stage: the optimization phase. The optimization space of a structure is
non-convex with numerous local minima. To perform a search of a more global nature, the authors intend to
implement methods that sample the search space at multiple points, such as evolutionary algorithms and particle
swarm methods. Using the structure prototype from the machine learning algorithm, multiple bridge designs
would be developed. These designs would then be used to seed the optimization algorithm and come up with an
optimized structural design.
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