1. INTRODUCTION

- **FBR cycle system**
 - Low-decontaminated MA fuel is to be used.
- **Sphere-pac fuel manufacturing**
 - MOX fuel is to be formed to be spherical. (About 10µm~1000µm)
 - Two kind of particle of different diameter are blended and packed.
- **Challenging of sphere-pac fuel**
 - For achieving \(\text{HIGH and UNIFORM} \) packing density
 - 1. Comprehending the behavior of particles in a vibrating tube
 - 2. Estimating the most effective value

We apply a Distinct Element Method (DEM) to numerical simulation of the vibration-based packing process.

2. COMPUTATIONAL METHOD

- **Two-Dimensional Distinct Element Method**
 - To calculate a contact force...
 - Virtual spring and Virtual dashpot are assumed.
 - A repulsion force and A friction force
 - Contact Force can be expressed

- **Pseudo Three-Dimensional Model**
 - Particles of the same diameter
 - 3-D closest packed structure ≠ 2-D closest packed structure
 - Equivalent diameter \(r' \) is defined

3. NUMERICAL SIMULATION

- **Two-dimensional simulation**
 - Vibration added
 - No infiltration of particles due to 2-D simulation

- **Pseudo three-dimensional simulation**
 - Vibration added
 - Realistic analysis of fuel packing phenomenon
 - Enhancement of the infiltration due to external vibration

NOMENCLATURE
- \(F_i \): contact force
- \(K_i \): a stiffness coefficient
- \(\eta_i \): a damping coefficient
- \(u_i \): relative displacement
- \(\psi_i \): displacement of relative rotation
- \(m_i \): mass of particles
- \(I_i \): inertia moment
- \(n_i \): the number of contact particles

Equation of motion
- Newton's equation of motion

<table>
<thead>
<tr>
<th>PARTICLES</th>
<th>container</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of fine particles</td>
<td>1200</td>
</tr>
<tr>
<td>number of coarse particles</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>width</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modules</td>
<td>3.09E+9</td>
<td></td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>coefficient of friction</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>time step size</td>
<td>1.0E-7 [sec]</td>
</tr>
<tr>
<td>duration time</td>
<td>0.5 [sec]</td>
</tr>
<tr>
<td>vibration amplitude</td>
<td>2.5E-5 [m]</td>
</tr>
<tr>
<td>frequency</td>
<td>200 [Hz]</td>
</tr>
</tbody>
</table>